Рефлексы Геринга — Брейера.

Содержание
  1. Пневмотаксический центр. Вентральная группа дыхательных нейронов
  2. Вентральная группа дыхательных нейронов
  3. Рефлекс растяжения Геринга-Брейера
  4. 127. Рефлекторная регуляция дыхания, роль механорецепторов. Рефлексы слизистых носа, глотки, гортани, трахеи и бронхиол. Рефлекс Геринга-Брейера
  5. 128. Роль периферич и центральных хеморецепторов в регуляции дыхания, их функцион хар-ка. Влияние на вентиляцию легких гипоксии и гиперкапнии
  6. Регуляция дыхания
  7. Дыхательный центр
  8. Опыт Фредерика (1901 г.) с перекрестным кровообращением у собак
  9. Опыт Холдена
  10. Действие карбогена
  11. Периферические хеморецепторы:
  12. Медуллярные хеморецепторы:
  13. Механорецепторы (рецепторы растяжения)
  14. Ритмическая смена дыхательных фаз
  15. Механизм дыхательного акта. Дыхательный центр. Рефлекс Геринга-Брейера. Влияние рО2, рСО2, рН на дыхание
  16. Анатомия дыхательного центра
  17. Ритмические инспираторные разряды от дорсальной группы нейронов
  18. Нарастающий сигнал вдоха
  19. Контролируются два момента нарастающего сигнала
  20. Рефлекторная регуляция дыхания
  21. Рефлексы со слизистой оболочки полости носа
  22. Рефлексы с глотки
  23. Рефлексы с гортани и трахеи
  24. Рефлексы с рецепторов бронхиол
  25. Рефлексы с J-рецепторов
  26. Рефлекс Геринга — Брейера
  27. Проприоцептивный контроль дыхания
  28. Роль механорецепторов в регуляции дыхания
  29. ПОСМОТРЕТЬ ЁЩЕ:
  30. Рефлексы Геринга — Брейера

Пневмотаксический центр. Вентральная группа дыхательных нейронов

Рефлексы Геринга — Брейера.

Расположенный дорсально в nucleus parabrachialis верхней части моста пневмотаксический центр передает сигналы в область вдоха.

Главным в деятельности этого центра является контроль за точкой «выключения» нарастающего инспираторного сигнала и за длительностью фазы наполнения легких.

При сильном пневмотаксическом сигнале вдох может укоротиться до 0,5 сек, чему соответствует очень малое наполнение легких; при слабом пневмотаксическом сигнале вдох может продолжаться 5 сек или более, и легкие наполняются большим количеством воздуха.

Первичной задачей пневмотаксического центра является ограничение вдоха. При этом возникает вторичный эффект — увеличение скорости дыхания, т.к.

ограничение вдоха укорачивает длительность выдоха и общего периода каждого цикла дыхания.

Сильный пневмотаксический сигнал может увеличивать частоту дыхания до 30-40 в мин, в то время как слабый пневмотаксический сигнал может снизить частоту до 3-5 дыхательных движений в минуту.

Вентральная группа дыхательных нейронов

С двух сторон продолговатого мозга — около 5 мм впереди и латерально от дорсальной группы дыхательных нейронов — лежит вентральная группа дыхательных нейронов, расположенная рострально в nucleus ambiguus и каудально — в nucleus retroambiguus. Функции этой группы нейронов имеют некоторые важные отличия от функций дыхательных нейронов дорсальной группы.

1. Во время нормального спокойного дыхания дыхательные нейроны вентральной группы остаются почти полностью неактивными.

Нормальное спокойное дыхание вызывается только повторением инспираторных сигналов от дорсальной группы респираторных нейронов, передающихся главным образом в диафрагму, и выдох совершается под влиянием эластической тяги легких и грудной клетки. 2.

Нет никаких данных об участии дыхательных нейронов вентральной группы в основной ритмической осцилляции, регулирующей дыхание.

3.

Когда импульсация, вызывающая усиление легочной вентиляции, становится больше нормы, генерация дыхательных сигналов начинает проводиться от основного осциллирующего механизма в дорсальной группе нейронов к дыхательным нейронам вентральной группы.

В результате нейроны вентральной группы будут участвовать в создании дополнительной импульсации. 4. Электрическая стимуляция некоторых нейронов вентральной группы вызывает вдох, стимуляция других — выдох. Следовательно, эта группа нейронов участвует как в создании вдоха, так и в создании выдоха. Они являются особо важными для создания мощных экспираторных сигналов, передаваемых мышцам живота во время затрудненного выдоха. Таким образом, эта группа нейронов работает в основном как усиливающий механизм при необходимости сильного увеличения легочной вентиляции, особенно при тяжелой физической нагрузке.

Рефлекс растяжения Геринга-Брейера

В дополнение к центральным нервным механизмам регуляции дыхания, находящихся в пределах ствола мозга, в регуляции дыхания принимают участие и сигналы от рецепторов в легких.

Наиболее важными являются рецепторы растяжения, расположенные в мышечных участках стенок бронхов и бронхиол всех участков легких, которые в случае перерастяжения легких передают сигналы через блуждающие нервы в дорсальную группу дыхательных нейронов.

Эти сигналы действуют на вдох так же, как это делают сигналы из пневмотаксического центра: при перерастяжении легких рецепторы растяжения активируют обратную связь, которая «выключает» импульсацию вдоха и приостанавливает вдох.

Это называют рефлексом растяжения Геринга-Брейера. Рефлекс вызывает также учащение дыхания, как это делают и сигналы от пневмотаксического центра.

Похоже, что у человека рефлекс Геринга-Брейера активируется только после того, как дыхательный объем увеличивается более чем в 3 раза (становится больше 1,5 л). Предполагают, что этот рефлекс представляет собой в основном защитный механизм для предотвращения излишнего растяжения легких и не является важным компонентом при нормальной регуляции дыхания.

— Также рекомендуем «Активность дыхательного центра. Химическая регуляция дыхания»

Оглавление темы «Регуляция дыхания и газообмена»:
1. Транспорт кислорода в растворенном виде. Вытеснение кислорода
2. Транспорт двуокиси углерода кровью. Диссоциация двуокиси углерода
3. Эффект Холдейна. Изменение кислотности крови
4. Дыхательный коэффициент. Дыхательный центр
5. Пневмотаксический центр. Вентральная группа дыхательных нейронов
6. Активность дыхательного центра. Химическая регуляция дыхания
7. Влияние кислорода на дыхательный центр. Роль кислорода в регуляции дыхания
8. Феномен акклиматизации. Дыхание при физической нагрузке
9. Механизмы регулирования дыхания при физической нагрузке. Нейрогенная регуляция
10. Функция J-рецепторов легких. Механизм дыхания Чейн-Стокса

Источник: https://meduniver.com/Medical/Physiology/881.html

127. Рефлекторная регуляция дыхания, роль механорецепторов. Рефлексы слизистых носа, глотки, гортани, трахеи и бронхиол. Рефлекс Геринга-Брейера

Рефлексы Геринга — Брейера.

Рефлекторнаярегул-я дыхания осущ-ся благодаряобширным связям нейронов дых центра смеханорецепторами дых путей и альвеоллегких и рецепторов сосудистыхрефлексогенных зон.Вдых путях чел-ка наход-ся следующие типымеханорецепторов:1)ирритантные,илибыстроадаптирующиеся рецепторы слизистойдых путей; 2) рецепторырастяжения глмышц дых путей; 3)J-рецепторы.

Рефлексысо слизистой полости носа. Раздраж-еирритантныхрецептороввызывает сужение бронхов, ойщели, брадикардию, ↓ сердечного выброса,сужение просветасосудовкожи и мышц. Защитный рефлекс проявляетсяу новорожденных при кратковременномпогружении в воду: возникает остановкадыхания, препятствующая проникновениюводы в верхние дых пути.

Рефлексысглотки.Механ-коераздраж-е рецепторов вызывает сильнейшеесокращ-е диафрагмы, наружных межреберныхмышц, вдох, кот-й открывает дых путьчерез носовые ходы (аспирационныйрефлекс). Этот рефлекс выражен уноворожденных.

Рефлексыс гортани и трахеи. Раздраж-енервных окончаний вызывает кашлевойрефлекс, про­являющийся в резкомвыдохе на фоне сужения гортани, и сокращ-егл мышц бронхов, кот-е сохран-ся долгоевремя после рефлекса. Кашлевойрефлекс — основной легочной рефлексблуждающего нерва.

Рефлексыс рецепторов бронхиол. Многочисленныемиелинизированные рецепторы наход-сяв эпителии внутрилегочных бронхов ибронхи­ол. Их раздраж-е вызываетгиперпноэ, бронхоконстрикцию, сокращ-егортани, гиперсекрецию слизи, но никогдане сопровождается каш­лем.

Рефлексыс J-рецепторов.В альвеолярных перегородках в контактес капиллярами находятся особыеJ-рецепторы,кот-е чувств-ны к интерстиц отеку,легочной венозной гипертензии,раздражающим газам и ингаляц наркотичв-вам. Стимуляция J-рецептороввызывает вначале апноэ, затем поверхностноетахипноэ, гипотензию и брадикардию.

РефлексГеринга—Брейера. Раздуваниелегких у наркотизированного жив-огорефлекторно тормозит вдох и вызываетвыдох. Перерезка блуж­д нервов устраняетрефлекс. Нервные окончания, расположенныев бронхиальных мышцах, — это рецепторырастяжения легких. Рефлекс Геринга-Брейераконтролирует глубину и частоту дыхания.У чел-ка он имеет значение при дых объемах> 1 л (при физ нагрузке).

Уноворожденных рефлекс Геринга-Брейерачетко проявляется только в первые 3-4дня после рождения.

128. Роль периферич и центральных хеморецепторов в регуляции дыхания, их функцион хар-ка. Влияние на вентиляцию легких гипоксии и гиперкапнии

РО2и РСО2в артер крови чел-ка и жив-х поддерж-сяна стабильном уровне, несмотря наизменения потребления О2ивыделение СО2.Гипоксия и ↓ рН крови (ацидоз) вызываютгипервен­тиляцию, а гипероксия и ↑рН крови (алкалоз) — гиповентиляцию илиапноэ.

Контроль за содер­жанием вовнутр среде орг-ма О2,СО2и рН осущ-ся пе­риферическими ицентральными хеморецепторами.

Адекватныйраздраж-ль для периферич хеморецепторов- ↓ РО2артер крови, в меньшей степени ↑ РСО2и рН, а для центр хеморецепторов — ↑конц-и Н+во внеклеточной жидкости мозга.

Артериальные(периферич) хеморецепторы. Периферичхеморецепторы наход-ся в каротидных иаортальных тельцах.

Сигналы от ар­терхеморецепторов по синокаротидным иаортальным нервам по­ступают к нейронамядра одиночного пучка продолгов мозга,а затем переключ-ся на нейроны дыхцентра. Хеморецепторы возбуж­д-ся при↓ РаО2.

При РаО2= 80-60 мм рт ст наблюд-ся слабое ↑вентиляциилегких, а при РаО2< 50 мм рт ст возникает выраженнаягипервентиляция.

Р-яартер хеморецепторов и дыхания нагипоксию. НедостатокО2в артер крови явл-ся основным раздражителемпериферич хеморецепторов. Гипоксич р-ядыхания отсут­ствует у коренныхжителей высокогорья и исчезает ~ через5 лет у жителей равнин после начала ихадаптации к высокогорью (≥3500 м).

Центральныехеморецепторы. Этихеморецепторы наход-ся в ростральныхотделах продолгов мозга вблизи еговентра­льной поверхности, а также вразличных зонах дорсального дых ядра.

Раздражительдля центр хеморецепторов — изменениеконц-и Н+во внеклеточной ж-ти мозга. Регулируетпороговые сдвиги рН в области центрхеморецепторов гематоэнцефалическийбарьер, кот-й отделяет кровь от внеклеточнойжидкости мозга.

Через этот барьер осущ-сятранспорт О2,СО2и Н+между кровью и внеклеточной жидкостьюмозга.

Р-ядыхания на СО2:.гиперкапнияи ацидоз стимулируют, а гипокапния иалкалоз тормозят центр хеморецепторы.

Дляопред-я чувствит-и центр хеморецепторовк из­менению рН внеклеточной ж-тимозга используют метод возвратногодыхания. Испытуемый дышит из замкнутойемкости, заполненной чистым О2.

При дыхании в замкнутой системе выдыхаемыйСО2вызываетлинейное ↑ конц-и СО2и одновременно ↑ конц-ю Н+в крови, а также во внеклеточной ж-тимозга.

Тест проводят в течение 4-5 минпод контролем содержания СО2в выды­хаемом воздухе.

Источник: https://studfile.net/preview/4081468/page:49/

Регуляция дыхания

Рефлексы Геринга — Брейера.

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

Регуляция дыхания осуществляется ЦНС.

Спокойное дыхание взрослого человека характеризуется последовательной сменой актов вдоха и выдоха с частотой 14-16 дыханий в минуту.

Чтобы произошел вдох, необходимо сокращение дыхательных мышц.

Импульсы к ним поступают от мотонейронов передних рогов спинного мозга.

К диафрагме – от III – IV шейных сегментов, к межреберным мышцам – от грудных сегментов спинного мозга.

Мотонейроны получают импульсы от дыхательного центра, расположенного в продолговатом мозге.

Если перерезать спинной мозг под продолговатым мозгом, то дыхание – прекращается.

Дыхательный центр

Был открыт в 1812 г. Легаллуа и в 1842 г. Флурансом, которые своими опытами доказали его локализацию в продолговатом мозге.

Н.А.Миславский в 1885 г. уточнил местоположение дыхательного центра – в области РФ (ретикулярной формации) продолговатого мозга, т.к. перерезка между грудными и шейными сегментами спинного мозга – сохраняет диафрагмальное дыхание:

  • продолговатым и спинным – полностью прекращает дыхание,
  • выше продолговатого мозга – дыхание сохраняется.

Н.А.Миславским также было показано, что дыхательный центрсостоит из двух отделов:

  • инспираторного (отвечает на вдох),
  • экспираторного (отвечает за выдох).

Они находятся в реципрокных (то есть в противоположных) отношениях.

В настоящее время установлено:

  • в РФ продолговатого мозга находятся инспираторные и экспираторные нейроны,
  • эти нейроны рассеяны диффузно, среди других нейронов РФ и относительно друг друга,
  • инспираторных нейронов примерно вдвое больше, чем экспираторных.

В продолговатом мозге есть еще два скопления дыхательных нейронов – дорсальные и вентральные дыхательные ядра.

Дорсальное ядро содержит, в основном, инспираторные нейроны, контролирующие сокращение диафрагмы.

В вентральном ядре содержатся как инспираторные, так и экспираторные нейроны, которые включаются при форсированном дыхании.

Все дыхательные нейроны делят на 6 групп:

  • ранние инспираторные – активны в начале фазы вдоха (инспирации),
  • поздние инспираторные – активны в конце вдоха,
  • полные инспираторные – активны в течение всего вдоха,
  • постинспираторные – максимальный разряд в начале выдоха,
  • экспираторные – активны во вторую фазу выдоха,
  • преинспираторные – активны перед вдохом, они включают активную экспирацию (выдох.

Значение дыхательных нейронов:

  • Преинспираторные и ранние инспираторные влияют на момент начала вдоха.
  • Инспираторные нейроны ДЦ генерируют дыхательный ритм (частоту и глубину дыхания), иннервируют мотонейроны.
  • Постинспираторные нейроны контролируют процесс пассивного выдоха.
  • Экспираторные нейроны отвечают за активный выдох, так как иннервируют мотонейроны внутренних межреберных мышц и мышц передней брюшной стенки.

Дыхательный центр – это совокупность нервных клеток, расположенных в различных отделах ЦНС и принимающих участие в регуляции дыхания.

Опыт Фредерика (1901 г.) с перекрестным кровообращением у собак

У двух собак, находящихся под наркозом, перекрестносоединяли сонные артерии и яремные вены, латерально же расположенные сосудыпережимали. При этом голова 1-й собаки снабжались кровью из туловища 2-й инаоборот.

У первой собаки кратковременно пережимали трахею, и у нее в крови уменьшалось содержание кислорода (гипоксемия) и увеличивалось содержание углекислого газа (гиперкапния). Эта кровь поступала в голову 2-й собаки, и у нее наступала одышка (диспноэ).

В результате у нее в крови увеличивалось содержание кислорода (гипероксимия) и уменьшалось содержание углекислого газа (гипокапния), и эта кровь поступала в голову 1-й собаки, и у нее наступало апноэ – остановка дыхания. (Нормальное дыхание — эйпноэ).

На состояние ДЦ влияет газовый состав крови:

При увеличении в крови напряжения углекислого газа и уменьшении кислорода, ДЦ – возбуждается и, наоборот, уменьшается, если в крови уменьшается напряжение углекислого газа и увеличивается напряжение кислорода.

Опыт Холдена

При дыхании в герметичной камере в воздухе увеличивалось содержание CO2 и уменьшалось O2 – наступала одышка. Когда CO2 поглощается натронной известью, одышка наступала намного позже, хотя содержание O2 в воздухе значительно снижалось.

Одышка наступает:

  • При снижении O2 в атмосферном воздухе с 20,94% до 12%, т.е. на 9%.
  • При повышении содержания CO2 в альвеолярном воздухе на 0,17% вентиляция удваивается.

Действие карбогена

Карбоген – газовая смесь, состоящая из 96% — O2, 4% — CO2.

В сравнении с воздухом в карбогене в 4,8 раза больше O2 и в 130 раз – CO2.

Карбоген применяют при расстройствах дыхания.

Эффект карбогена связан с эффектами содержащегося в нем CO2:

  1. стимуляция ДЦ,
  2. расширение бронхов и кровеносных сосудов,
  3. сдвиг кривой диссоциации HbO2 вправо –> увеличение диффузии O2 из крови в ткани.

Карбоген применяется в медицинских целях для лечения горной болезни, отравления угарным газом, глаукомы, стресса, при восстановлении слуха после воздействия шума и в ряде случаев для улучшения кровоснабжения опухолей при химио- и лекарственной терапии.

В 1911 г. Винтерштейн доказал, что возбудителем ДЦ также являются ионы Н.

Ацидоз – усиливает легочную вентиляцию.

Он показал, что возбуждают ДЦ нелетучие кислоты – молочная, никотиновая и другие.

Самым сильным стимулятором дыхания являются:

  • pCO2 (гиперкапния),
  • pH (ацидоз),
  • pO2 (гипоксемия).

Механизм действия гуморальных факторов (CO2, O2, H) на ДЦ:

  1. Через хеморецепторы (периферические) сосудистых рефлексогенных зон.
  2. Через хеморецепторы, находящиеся в продолговатом мозге (медуллярные).

Периферические хеморецепторы:

  • расположены в каротидных и в аортальных тельцах,
  • реагируют на (в артериальной крови):
    • увеличение pCO2,
    • уменьшение pO2,
    • увеличение H (от есть уменьшение pH).

Хеморецепторы возбуждаются постоянно CO2 и O2 , растворенными в крови, а также H, т.к. порог для pCO2 равен 20-30 мм.рт.ст. В норме pCO2 = 40 мм.рт.ст.

Порог для pO2 равен 130-140 мм.рт.ст. В норме pO2 = 100 мм.рт.ст. Одышка же наступает при pO2 ниже 50-60 мм.рт.ст.

Таким образом, хеморецепторы постоянно посылают импульсы вДЦ, возбуждая инспираторные нейроны, причем большую роль играют хеморецепторыкаротидного синуса.

Медуллярные хеморецепторы:

  • Находятся на вентролатеральной поверхности продолговатого мозга.
  • Реагируют только на H и изменение напряжения CO2.
  • Эти рецепторы возбуждаются позднее, поскольку требуется время для проникновения CO2 через гематоэнцефалический барьер.
  • Импульсы, поступающие с медуллярных хеморецепторов в ДЦ, увеличивают прирост вентиляции на 60-80%.

Механорецепторы (рецепторы растяжения)

Находятся в:

  • легких,
  • дыхательных путях,
  • дыхательных мышцах (проприорецепторы)

Это барорецепторы рефлексогенных зон.

Механорецепторы легких (РРЛ)

Рецепторы растяжения легких (РРЛ) – являются наиболее значимым среди всех механорецепторов.

В 1868 г. Геринг и Брейер доказали наличие в легких рецепторов, которые возбуждаются при их растяжении, то есть при вдохе. Они являются чувствительными окончаниями блуждающих нервов, которые направляют свои импульсы в ДЦ.

Геринг и Брейтер раздували легкие и наблюдали прекражение вдоха (инспираторно-тормозной рефлекс).

Таким образом, этот рефлекс способствует смене вдоха на выдох. Он называется рефлексом Геринга-Брейера и является рефлексом саморегуляции дыхания.

При перерезке блуждающих нервов, дыхание становится редким иглубоким, альвеолы расширяются до максимального предела, т.к. вдох нетормозится. В этом случае, смене вдоха на выдох будет способствовать пневмотаксическийцентр (ПТЦ).

В настоящее время известно, что в легких существует 3 разновидности  механорецепторов:

  • РРЛ медленноадаптирующиеся,
  • РРЛ быстроадаптирующиеся или ирритантные,
  • Юкстаальвеолярные рецепторы капилляров.

РРЛ медленноадаптирующиеся:

  • Они расположены в ГМК (гладкомышечных клетках) дыхательных путей.
  • Возбуждаются при вдохе.
  • С них осуществляется рефлекс Геринга-Брейера.

Ирритантные рецепторы (быстроадаптирующиеся):

  • Расположены в слизистой дыхательных путей.
  • Реагируют на механические и химические стимулы.
  • Быстро адаптирующиеся.
  • Длительное раздражение этих рецепторов приводит к хроническому бронхиту.

Физиологическое значение при вдыхании токсических веществ: Сужение бронхов -> вентиляция альвеол -> поступление этих веществ в альвеолы и кровь.

Юкстаальвеолярные рецепторы («юкстакапиллярные»):

  • расположены в паренхиме легких, в альвеолярных перегородках, прилегающих к капиллярам,
  • стимулируются, главным образом, растяжением легочных сосудов,
  • быстро реагируют на введение химических веществ в легочные сосуды,
  • стимуляция может вызвать апноэ, затем учащение дыхания, уменьшение давления, брадикардию и бронхоспазм.

Возбуждение механорецепторов верхних ДП вызывает возникновение дыхательных рефлексов.

Защитные дыхательные рефлексы:

  • Чихание – с рецепторов слизистой носа.
  • Кашель – с ирритантных рецепторов слизистой гортани, трахеи, бронхов.
  • Рефлекс ныряльщиков – остановка дыхания при действии воды на носовые ходы.
  • Остановка дыхания во время акта глотания.
  • Рефлексогенная задержка дыхания – сужение ой щели, бронхоконстрикция при вдыхании дыма, газов, едких веществ.

Механорецепторы межреберных мышц и диафрагмы (проприорецепторы) – они осуществляют обратную связь дыхательных мышц с ДЦ.

Барорецепторы рефлексогенных зон – возбуждаются они при увеличении АД и дыхание при этом угнетается. При уменьшении АД – дыхание усиливается.

Ритмическая смена дыхательных фаз

  1. Генератор центральной инспираторной активности (возбуждения) – сокр. ЦИА (В) – представлен α-инспираторными нейронами дорсального ядра. Они возбуждаются от хеморецепторов (центральных и сосудистых рефлексогенных зон). Чем больше раздражение хеморецепторов (ХР), тем больше скорость ЦИА.
  2. Механизм выключения инспирации – состоит из β-инспираторных нейронов и инспираторно-тормозных (ИТ), т.е. экспираторных нейронов. β-инспираторные нейроны возбуждаются афферентными сигналами от РРЛ. На механизм выключения вдоха влияют также нисходящие импульсы от ПТЦ.

Хеморецепторы возбуждаются постоянно и постоянно посылаютимпульсы в продолговатый мозг, возбуждая α-инспираторные нейроны. Онивозбуждаются и посылают импульсы к мотонейронам спинного мозга.

Мотонейроны возбуждаются и посылают импульсы к мышцам. Они сокращаются и наступает вдох.

При вдохе объем легких увеличивается и возбуждаются РРЛ,которые посылают возбуждающие импульсы по чувствительным волокнам блуждающегонерва к β-инспираторнымнейронам. В результате суммации импульсов от α-инспираторных нейронов ирецепторов растяжения легких достигается порог и возбуждаются  и β-инспираторные нейроны благодарявлиянию вышележащих отделов ЦНС.

Инспираторно-тормозные нейроны посылают тормозные импульсы к α-инспираторным нейронам. В результате α-инспираторные нейроны тормозятся и не посылают импульсы к мотонейронам. Мышцы расслабляются, происходит выдох.

К β-инспираторным нейронам не поступают импульсы, и онитормозятся (не возбуждаются).

β-инспираторные нейроны не возбуждают инспираторно-тормозные нейроны и поэтому они не посылают импульсы к  α-инспираторным нейронам. α-инспираторные нейроны вновь возбуждаются импульсами от хеморецепторов и наступает вдох.

5 0

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/regulyatsiya-dyhaniya

Механизм дыхательного акта. Дыхательный центр. Рефлекс Геринга-Брейера. Влияние рО2, рСО2, рН на дыхание

Рефлексы Геринга — Брейера.
Подробности

Нервная система обычно устанавливает такую скорость альвеолярной вентиляции, которая почти точно соответствует потребностям тела, поэтому напряжение кислорода (Ро2) и двуокиси углерода (Рсо2) в артериальной крови мало изменяется даже при тяжелой физической нагрузке и при большинстве других случаев респираторного стресса. В этой статье изложена функция нейрогенной системы регуляции дыхания.

Анатомия дыхательного центра

Дыхательный центр состоит из нескольких групп нейронов, расположенных в стволе мозга по обе стороны продолговатого мозга и моста.

Их делят на три большие группы нейронов:

  1. дорсальная группа дыхательных нейронов, расположенная в дорсальной части продолговатого мозга, которая в основном вызывает вдох;
  2. вентральная группа дыхательных нейронов, которая расположена в вентролатеральной части продолговатого мозга и в основном вызывает выдох;
  3. пневмотаксический центр, который расположен дорсально в верхней части моста и контролирует в основном скорость и глубину дыхания. Наиболее важную роль в контроле дыхания выполняет дорсальная группа нейронов, поэтому первой будем рассматривать ее функции.

Дорсальная группа дыхательных нейронов простирается на большую часть длины продолговатого мозга. Большинство этих нейронов расположено в ядре одиночного тракта, хотя расположенные в близлежащей ретикулярной формации продолговатого мозга дополнительные нейроны также имеют важное значение для регуляции дыхания.

Ядро одиночного тракта является сенсорным ядром для блуждающего и языкоглоточного нервов, которые передают в дыхательный центр сенсорные сигналы от:

  1. периферических хеморецепторов;
  2. барорецепторов;
  3. разного типа рецепторов легких.

Ритмические инспираторные разряды от дорсальной группы нейронов

Базовый ритм дыхания генерируется в основном дорсальной группой дыхательных нейронов.

Даже после перерезки всех входящих в продолговатый мозг периферических нервов и ствола мозга ниже и выше продолговатого мозга эта группа нейронов продолжает генерировать повторяющиеся залпы потенциалов действия инспираторных нейронов. Основная причина возникновения этих залпов неизвестна.

Через некоторое время схема активации повторяется, и так продолжается в течение всей жизни животного, поэтому большинство физиологов, занимающихся физиологией дыхания, полагают, что у человека тоже имеется подобная сеть нейронов, расположенная в пределах продолговатого мозга; возможно, что в нее входит не только дорсальная группа нейронов, но и прилегающие части продолговатого мозга, и что эта сеть нейронов отвечает за основной ритм дыхания.

Нарастающий сигнал вдоха

Сигнал от нейронов, который передается инспираторным мышцам, в основном диафрагме, не является мгновенным всплеском потенциалов действия. При нормальном дыхании он постепенно увеличивается в течение примерно 2 сек.

После этого он резко снижается примерно на 3 сек, что прекращает возбуждение диафрагмы и позволяет эластической тяге легких и грудной стенки выполнить выдох. Потом инспираторный сигнал начинается опять, и цикл повторяется снова, и в перерыве между ними происходит выдох. Таким образом, инспираторный сигнал является нарастающим сигналом.

По-видимому, такое нарастание сигнала обеспечивает постепенное увеличение объема легких во время вдоха вместо резкой инспирации.

Контролируются два момента нарастающего сигнала

  1. Скорость прироста нарастающего сигнала, поэтому во время затрудненного дыхания сигнал растет быстро и вызывает быстрое наполнение легких.
  2. Лимитирующая точка, при достижении которой сигнал внезапно пропадает. Это обычный способ контроля над скоростью дыхания; чем раньше прекращается нарастающий сигнал, тем меньше длительность вдоха.

    При этом сокращается и длительность выдоха, в результате дыхание учащается.

Рефлекторная регуляция дыхания

Рефлекторная регуляция дыхания осуществляется благодаря тому, что нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон.

В легких человека находятся следующие типы механорецепторов:

  1. ирритантные, или быстроадаптирующиеся, рецепторы слизистой оболочки дыхательных путей;
  2. рецепторырастяжения гладких мышц дыхательных путей;
  3. J-рецепторы.

Рефлексы со слизистой оболочки полости носа

Раздражение ирритантных рецепторов слизистой оболочки полости носа, например табачным дымом, инертными частицами пыли, газообразными веществами, водой вызывает сужение бронхов, ой щели,брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Защитный рефлекс проявляется у новорожденных при кратковременном погружении в воду. У них возникает остановка дыхания, препятствующая проникновению воды в верхние дыхательные пути.

Рефлексы с глотки

Механическое раздражение рецепторов слизистой оболочки задней части полости носа вызывает сильнейшее сокращение диафрагмы, наружных межреберных мышц, а следовательно, вдох, который открывает дыхательный путь через носовые ходы (аспирационный рефлекс). Этот рефлекс выражен у новорожденных.

Рефлексы с гортани и трахеи

Многочисленные нервные окончания расположены между эпителиальными клетками слизистой оболочки гортани и главных бронхов. Эти рецепторы раздражаются вдыхаемыми частицами, раздражающими газами, бронхиальным секретом, инородными телами.

Все это вызывает кашлевой рефлекс, проявляющийся в резком выдохе на фоне сужения гортани и сокращение гладких мышц бронхов, которое сохраняется долгое время после рефлекса.

Кашлевой рефлекс является основным легочным рефлексом блуждающего нерва.

Рефлексы с рецепторов бронхиол

Многочисленные миелинизированные рецепторы находятся в эпителии внутрилегочных бронхов и бронхиол. Раздражение этих рецепторов вызывает гиперпноэ, бронхоконстрикцию, сокращение гортани, гиперсекрецию слизи, но никогда не сопровождается кашлем.

Рецепторы наиболее чувствительны к трем типам раздражителей:

  1. табачному дыму, многочисленным инертным и раздражающим химическим веществам;
  2. повреждению и механическому растяжению дыхательных путей при глубоком дыхании, а также пневмотораксе, ателектазах, действии бронхоконстрикторов;
  3. легочной эмболии, легочной капиллярной гипертензии и к легочным анафилактическим феноменам.

Рефлексы с J-рецепторов

В альвеолярных перегородках в контакте с капиллярами находятся особые J-рецепторы. Эти рецепторы особенно чувствительны к интерстициальному отеку, легочной венозной гипертензии, микроэмболии, раздражающим газам и ингаляционным наркотическим веществам, фенилдигуаниду (при внутривенном введении этого вещества).

Стимуляция J-рецепторов вызывает вначале апноэ, затем поверхностное тахипноэ, гипотензию и брадикардию.

Рефлекс Геринга — Брейера

Раздувание легких у наркотизированного животного рефлекторно тормозит вдох и вызывает выдох. Перерезка блуждающих нервов устраняет рефлекс.

Нервные окончания, расположенные в бронхиальных мышцах, играют роль рецепторов растяжения легких.

Их относят к медленно адаптирующимся рецепторам растяжения легких, которые иннервируются миелинизированными волокнами блуждающего нерва

Рефлекс Геринга — Брейера контролирует глубину и частоту дыхания. У человека он имеет физиологическое значение при дыхательных объемах свыше 1 л (например, при физической нагрузке).

У бодрствующего взрослого человека кратковременная двусторонняя блокада блуждающих нервов с помощью местной анестезии не влияет ни на глубину, ни на частоту дыхания.

У новорожденных рефлекс Геринга — Брейера четко проявляется только в первые 3—4 дня после рождения.

Проприоцептивный контроль дыхания

Рецепторы суставов грудной клетки посылают импульсы в кору больших полушарий и являются единственным источником информации о движениях грудной клетки и дыхательных объемах. 

Межреберные мышцы, в меньшей степени диафрагма, содержат большое количество мышечных веретен.

Активность этих рецепторов проявляется при пассивном растяжении мышц, изометрическом сокращении и изолированном сокращении интрафузальных мышечных волокон. Рецепторы посылают сигналы в соответствующие сегменты спинного мозга.

Недостаточное укорочение инспираторных или экспираторных мышц усиливает импульсацию от мышечных веретен, которые через мотонейроны дозируют мышечное усилие.

Источник: http://fundamed.ru/nphys/131-mekhanizm-dykhatelnogo-akta-dykhatelnyj-tsentr-refleks-geringa-brejera-vliyanie-ro2-rso2-rn-na-dykhanie.html

Роль механорецепторов в регуляции дыхания

Рефлексы Геринга — Брейера.

Рефлексы Геринга и Брейера. Смене дыхательных фаз, т. е. периодической деятель­ности дыхательного центра, способствуют сигналы, поступающие от механорецепторов легких по афферентным волокнам блуждающих нервов.

После перерезки блуждающих нервов, выключающей эти импульсы, дыхание у животных становится более редким и глубоким. При вдохе инспираторная активность продолжает нарастать с прежней скоростью до нового, более высокого уровня (рис. 160).

Значит афферентные сигналы, поступающие от легких, обеспечивают смену вдоха на выдох раньше, чем это делает дыхательный центр, лишенный обратной связи с легкими. После перерезки блуждающих нервов удлиняется и фаза выдоха.

Отсюда следует, что импульсы от рецепторов легких способствуют и смене выдоха вдохом, укорачивая фазу экспирации.

Геринг и Брейер (1868) сильные и постоянные дыхательные рефлексы обнаружили при изменениях объема легких. Увеличение объема легких вызывает три рефлекторных эффекта. Во-первых, раздувание легких при вдохе может его преждевременно прекратить (инспираторно-тормозящий рефлекс).

Во-вторых, раздувание легких при выдохе задер­живает наступление следующего вдоха, удлиняя фазу экспирации (экспираторно-облег-чающий рефлекс}.

В-третьих, достаточно сильное раздувание легких вызывает короткое (0,1—0,5 с) сильное возбуждение инспираторных мышц, возникает судорожный вдох — «вздох» {парадоксальный эффект Хэда}.

Уменьшение объема легких обусловливает усиление инспираторной активности и укорочение выдоха, т. е. способствует наступлению следующего вдоха {рефлекс на спадение легких}.

Таким образом, деятельность дыхательного центра зависит от изменений объема легких. Рефлексы Геринга и Брейера обеспечивают так называемую объемную обратную связь дыхательного центра с исполнительным аппаратом дыхательной системы.

Значение рефлексов Геринга и Брейера состоит в регулировании соотношения глуби­ны и частоты дыхания в зависимости от состояния легких. При сохраненных блуждающих нервах гиперпиоэ, вызываемое гиперкапнией или гипоксией, проявляется увеличением как глубины, так и частоты дыхания.

После выключения блуждающих нервов учащения дыхания не происходит, вентиляция легких постепенно растет только вследствие увеличе­ния глубины дыхания. В результате максимальная величина вентиляции легких оказы­вается сниженной приблизительно вдвое.

Таким образом, сигналы от рецепторов легких обеспечивают повышение частоты дыхания при гиперпноэ, наступающем при гиперкап-нии и гипоксии.

У взрослого человека в отличие от животных значение рефлексов Геринга и Брейера в регуляции спокойного дыхания невелико.

Временная блокада блуждающих нервов местными анестетиками не сопровождается существенным изменением частоты и глуби­ны дыхания.

Однако увеличение частоты дыхания при гиперпноэ у человека, как и животных, обеспечивается рефлексами Геринга и Брейера: это увеличение выключается блокадой блуждающих нервов.

Рефлексы Геринга и Брейера хорошо выражены у новорожденных. Эти рефлексы играют важную роль в укорочении дыхательных фаз, в особенности выдохов. Величина

рефлексов Геринга и Брейера уменьшается в первые дни и недели после рождения. В легких имеются многочисленные окончания афферентных нервных волокон. Из­вестны три группы рецепторов легких: рецепторы растяжения легких, ирритантные рецепторы и юкстаальвеолярные рецеш-оры капилляров (j-рецепторы). Специализиро­ванные хеморецепторы для двуокиси углерода и кислорода отсутствуют.

Рецепторы растяжения легких. Возбуждение этих рецепторов возникает или усиливается при возрастании объема легких. Частота потенциалов действия в аффе­рентных волокнах рецепторов растяжения увеличивается при вдохе и снижается при выдохе. Чем глубже вдох, тем больше частота импульсов, посылаемых рецепторами растяжения в дыхательный центр.

Рецепторы растяжения легких обладают разными поро­гами. Приблизительно половина рецепторов возбуждена и при выдохе, в некоторых из них редкие импульсы возникают даже при полном спадении легких, однако при вдохе частота импульсов в них резко увеличивается (низкопороговые рецепторы).

Другие рецепторы возбуждаются только при вдохе, когда объем легких увеличивается сверх функциональ­ной остаточной емкости (высокопороговые рецепторы). При длительном, на многие секунды, увеличении объема легких частота разрядов-рецепторов убывает очень медлен­но (рецепторам свойственна медленная адаптация}.

Частота разрядов рецепторов растяжения легких уменьшается при увеличении содержания двуокиси углерода в про­свете воздухоносных путей.

В каждом легком около 1000 рецепторов растяжения. Они расположены преиму­щественно в гладких мышцах стенок воздухоносных путей — от трахеи до мелких бронхов. В альвеолах и плевре таких рецепторов нет.

Увеличение объема легких стимулирует рецепторы растяжения косвенно. Непосредственным их раздражителем является внутреннее напряжение стенки воздухоносных путей, зависящее от разности давлений по обе стороны их стенки. С увеличением объема легких возрастает эластическая тяга легких. Стремящиеся спадаться альвеолы растягивают стенки бронхов в радиальном направле­нии.

Поэтому возбуждение рецепторов растяжения зависит не только от объема легких, но и от эластических свойств легочной ткани, от ее растяжимости.

Возбуждение рецепторов внелегочных воздухоносных путей (трахеи и крупных бронхов), находящихся в грудной полости, определяется в основном отрицательным давлением в плевральной полости, хотя и зависит также от степени сокращения гладкой мускулатуры их стенок.

Раздражение рецепторов растяжения легких вызывает инспираторно-тормозящии рефлекс Геринга и Брейера.

Большая часть афферентных волокон от рецепторов растя­жения легких направляется в дорсальное дыхательное ядро продолговатого мозга, актив­ность инспираторных нейронов которого изменяется неодинаково. Около 60% инспира-торных нейронов в этих условиях тормозится.

Они ведут себя в соответствии с проявле­нием инспираторно-тормозящего рефлекса Геринга и Брейера. Такие нейроны обозначаются как lex. Остальные инспираторные нейроны при раздражении рецепторов растяжения, наоборот, возбуждаются (нейроны 1р).

Вероятно, нейроны 1(3 представля­ют собой промежуточную инстанцию, через которую осуществляется торможение нейтронов 1а и инспираторной активности в целом. Предполагают, что они входят в состав механизма выключения вдоха.

Изменения дыхания зависят от частоты раздражения афферентных волокон рецеп­торов растяжения легких.

Инспираторно-тормозящии и экспираторно-облегчающий рефлексы возникают только при относительно высоких (более 60 в 1 с) частотах электростимуляции.

Электростимуляция этих волокон низкими частотами (20—40 в 1 с), наоборот, вызывает удлинение вдохов и укорочение выдохов. Вероятно, относительно редкие разряды рецепторов растяжения легких на выдохе способствуют наступлению следующего вдоха.

Предыдущая12345678910Следующая

Дата добавления: 2016-03-27; просмотров: 1331; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/7-55518.html

Рефлексы Геринга — Брейера

Рефлексы Геринга — Брейера.

Раздувание легких у наркотизи­рованного животного рефлекторно тормозит вдох и вызывает выдох. Нервные окон­чания, расположенные в бронхиальных мышцах, играют роль ре­цепторов растяжения легких. Их относят к медленно адаптирую­щимся рецепторам растяжения легких, которые иннервируются ми-елинизированными волокнами блуждающего нерва.

Рефлекс Геринга — Брейера контролирует глубину и частоту дыхания. У человека он имеет физиологическое значение при ды­хательных объемах свыше 1 л (например, при физической нагрузке). У бодрствующего взрослого человека кратковременная двусторонняя блокада блуждающих нервов с помощью местной анестезии не влияет ни на глубину, ни на частоту дыхания.

У новорожденных рефлекс Геринга — Брейера четко проявляется только в первые 3—4 дня после рождения.

Проприоцептивный контроль дыхания. Рецепторы суставов груд­ной клетки посылают импульсы в кору больших полушарий и являются единственным источником информации о движениях груд­ной клетки и дыхательных объемах.

Межреберные мышцы, в меньшей степени диафрагма, содержат большое количество мышечных веретен. Активность этих рецепторов проявляется при пассивном растяжении мышц, изометрическом со­кращении и изолированном сокращении интрафузальных мышечных волокон.

Рецепторы посылают сигналы в соответствующие сегменты спинного мозга.

Недостаточное укорочение инспираторных или экс­пираторных мышц усиливает импульсацию от мышечных веретен, которые через у-мотонейроны повышают активность о-мотонейронов и дозируют таким образом мышечное усилие.

Хеморефлексы дыхания. Рог и Рсог в артериальной крови че­ловека и животных поддерживается на достаточно стабильном уров­не, несмотря на значительные изменения потребления Оз и выде­ление С02.

Гипоксия и понижение рН крови (ацидоз) вызывают усиление вентиляции (гипервентиляция), а гипероксия и повышение рН крови (алкалоз) — понижение вентиляции (гиповентиляция) или апноэ.

Контроль за нормальным содержанием во внутренней среде организма 02, СОг и рН осуществляется периферическими и центральными хеморецепторами.

Адекватным раздражителем для периферических хеморецепторов является уменьшение Ро; артериальной крови, в меньшей степени увеличение Рсо2 и рН, а для центральных хеморецепторов — уве­личение концентрации Н* во внеклеточной жидкости мозга.

Артериальные (периферические) хеморецепто-ры. Периферические хеморецепторы находятся в каротидных и

аортальных тельцах. Сигналы от артериальных хеморецепторов по синокаротидным и аортальным нервам первоначально поступают к нейронам ядра одиночного пучка продолговатого мозга, а затем переключаются на нейроны дыхательного центра.

Ответ перифери­ческих хеморецепторов на понижение Рао является очень быстрым, но нелинейным. При Рао; в пределах 80—60мм рт. ст. (10,6—8,0 кПа) наблюдается слабое усиление вентиляции, а при Рао; ниже 50 мм рт. ст.

(6,7 кПа) возникает выраженная гипервентиляция.

Расо2 и рН крови только потенцируют эффект гипоксии на артериальные хеморецепторы и не являются адекватными раздра­жителями для этого типа хеморецепторов дыхания.

Реакция артериальных хеморецепторов и дыхания на гипоксию. Недостаток С>2 в артериальной крови является основным раздражи­телем периферических хеморецепторов. Импульсная активность в афферентных волокнах синокаротидного нерва прекращается при Раод выше 400 мм рт. ст. (53,2 кПа).

При нормоксии частота разрядов синокаротидного нерва составляет 10% от их максимальной реакции, которая наблюдается при Раод около 50 мм рт. ст.

и ниже-Гипоксическая реакция дыхания практически отсутствует у корен­ных жителей высокогорья и исчезает примерно через 5 лет у жителей равнин после начала их апаптации к высокогорью (3500 м и выше).

Центральные хеморецепторы. Окончательно не уста­новлено местоположение центральных хеморецепторов. Исследова­тели считают, что такие хеморецепторы находятся в ростральных отделах продолговатого мозга вблизи его вентральной поверхности, а также в различных зонах дорсального дыхательного ядра.

Наличие центральных хеморецепторов доказывается достаточно просто: после перерезки синокаротидных и аортальных нервов у подопытных животных исчезает чувствительность дыхательного цен­тра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз. Перерезка ствола мозга непосредственно выше продолговатого мозга не влияет на характер этой реакции.

Адекватным раздражителемдля центральных хеморецепторов является изменение концентрации Н4 во внеклеточной жидкости мозга.Функцию регулятора пороговыхсдвигов рН в области цен­тральных хеморецепторов выполняют структуры гематоэнцефали-ческого барьера, который отделяет кровь отвнеклеточной жидкости мозга.

Через этот барьер осуществляется транспорт02, С02 и Нмежду кровьюи внеклеточной жидкостью мозга.Транспорт СОз и H+ из внутреннейсреды мозга в плазмукрови черезструктуры гематоэнцефалического барьерарегулируется с участием фермента ка рбоангидразы.

Реакция дыхания на COi. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы.

Для определения чувствительности центральных хеморецепторов к изменению рН внеклеточной жидкости мозга используют метод возвратного дыхания. Испытуемый дышит из замкнутой емкости, заполненной предварительно чистым Од. При дыхании в замкнутой

Рис. 8.12. Изменение вентиляциилегких (ve. л'мин ) в зависимости от парци­ального давленияОд (А) иCOz

Источник: https://studopedia.ru/17_61407_refleksi-geringa--breyera.html

Uchebnik-free
Добавить комментарий