Биомеханика вдоха и выдоха

Биомеханика выдоха

Биомеханика вдоха и выдоха

Форсированный вдох.

Транспорт веществ в ЖКТ.

Ротовая полость – в небольшом количестве эфирные масла.

Желудок – вода, алкоголь, минеральные соли, моносахариды.

Двенадцатиперстная кишка – мономеры, ЖК.

Тощая кишка – до 80% мономеров.

В верхнем отделе – моносахариды, аминокислоты, жирные кислоты.

В нижнем отделе – вода, соли.

3. Биомеханика вдоха и выдоха. Преодоление сил при осуществлении вдоха. Первичные легочные объемы и емкости

Дыхание – совокупность процессов, в результате которых происходит потребление О2, выделение СО2 и преобразование энергии химических веществ в биологически полезные формы.

Этапы дыхательного процесса.

1) Вентиляция легких.

2) Диффузия газа в легких.

3) Транспорт газов.

4) Обмен газов в тканях.

5) Тканевое дыхание.

Биомеханика активного вдоха. Вдох (инспирация) – активный процесс.

При вдохе грудная клетка увеличивается в трех направлениях:

1) в вертикальном – за счет сокращения диафрагмы и опусканием ее сухожильного центра. При этом отодвигаются вниз внутренние органы;

2) в сагиттальном направлении – связано с сокращением наружных межреберных мышц и отходом конца грудины вперед;

3) во фронтальном – ребра перемещаются вверх и наружи за счет сокращения наружных межреберных и межхрящевых мышц.

1) Обеспечивается усиленным сокращением инспираторных мышц (межреберных наружных и диафрагмы).

2) Сокращением вспомогательных мышц:

а) разгибающих грудной отдел позвоночника и фиксирующих и отводящих плечевой пояс назад – трапециевидная, ромбовидная, поднимающая лопатку, малые и большие грудные, передние зубчатые;

б) поднимающих ребра.

При форсированном вдохе используется резерв легочной системы.

Вдох – активный процесс, т. к. при вдохе преодолеваются силы:

1) эластического сопротивления мышц и легочной ткани (сочетание растяжения и упругости).

2) неэластическое сопротивление – преодоление силы трения при перемещение ребер, сопротивление внутренних органов диафрагме, тяжесть ребер, сопротивление движению воздуха в бронхах среднего диаметра. Зависит от тонуса бронхиальных мышц (10– 20мм рт. ст. у взрослых, здоровых людей). Может увеличиться до 100мм при бронхоспазме, гипоксии.

Процесс вдоха.

При вдохе увеличивается объем грудной клетки, давление в плевральной щели с 6мм рт. ст. увеличивается до – 9, а при глубоком вдохе – до 15 – 20мм рт. ст. Это отрицательное давление (т. е. ниже атмосферного).

Легкие пассивно расправляются, давление в них становится на 2 – 3мм ниже атмосферного и воздух поступает в легкие.

Произошел вдох.

Пассивный процесс. Когда вдох окончен, дыхательные мышцы расслаблены, под влиянием силы тяжести ребра опускаются, внутренние органы возвращают диафрагму на место. Объем грудной клетки уменьшается, происходит пассивный выдох. Давление в легких на 3 – 4мм выше атмосферного.

При форсированном выдохе участвуют внутренние межреберные мышцы, мышцы сгибающие позвоночник и мышцы живота.

Роль сурфактанта.

Это фосфолипидное вещество вырабатываемое гранулярными пневмоцитами. Стимулом к его выработке являются глубокие вдохи.

Во время вдоха сурфактант распределяется по поверхности альвеол пленкой толщиной 10 – 20мкм. Эта пленка препятствует спадению альвеол во время выдоха, так как сурфактант на вдохе увеличивает силы поверхностного натяжения слоя жидкости, выстилающей альвеолы.

При выдохе – уменьшает их.

Пневмоторакс – попадание воздуха в плевральную щель.

— открытый;

— закрытый;

— односторонний;

— двусторонний.

Грудной и брюшной тип дыхания.

Эффективнее брюшной, т. к. повышается внутрибрюшное давление и увеличивается возврат крови к сердцу.

4. Методы исследования у человека рефлексов: сухожильное (коленный, Ахиллов), Ашнера, зрачкового.

Билет №4

1. Принципы координации рефлекторной деятельности: взаимоотношения возбуждения и торможения, принцип обратной связи, принцип доминанты.

Координация обеспечивается избирательным возбуждением одних центров и торможением других. Координация — это объединение рефлекторной деятельности ЦНС в единое целое, что обеспечивает реализацию всех функций организма. Выделяют следующие основные принципы координации:

Принцип иррадиации возбуждений.

Нейроны разных центров связаны между собой вставочными нейронами, поэтому импульсы, поступающие при сильном и длительном раздражении рецепторов, могут вызвать возбуждение не только нейронов центра данного рефлекса, но и других нейронов. Иррадиация возбуждения обеспечивает при сильных и биологически значимых раздражениях включение в ответную реакцию большего количества мотонейронов.

Принцип общего конечного пути. Импульсы, приходящие в ЦНС по разным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же вставочным, или эфферентным, нейронам.

Один и тот же мотонейрон может возбуждаться импульсами, приходящими от различных рецепторов (зрительных, слуховых, тактильных), т.е.

участвовать во многих рефлекторных реакциях (включаться в различные рефлекторные дуги).

Принцип доминанты. Был открыт А.А.

Ухтомским, который обнаружил, что раздражение афферентного нерва (или коркового центра), обычно ведущего к сокращению мышц конечностей при переполнении у животного кишечника, вызывает акт дефекации.

В данной ситуации рефлекторное возбуждение центра дефекации» подавляет, тормозит двигательные центры, а центр дефекации начинает реагировать на посторонние для него сигналы.

А.А.Ухтомский считал, что в каждый данный момент жизни возникает определяющий (доминантный) очаг возбуждения, подчиняющий себе деятельность всей нервной системы и определяющий характер приспособительной реакции.

К доминантному очагу конвергируют возбуждения из различных областей ЦНС, а способность других центров реагировать на сигналы, приходящие к ним, затормаживается.

Благодаря этому создаются условия для формирования определенной реакции организма на раздражитель, имеющий наибольшее биологическое значение, т.е. удовлетворяющий жизненно важную потребность.

В естественных условиях существования доминирующее возбуждение может охватывать целые системы рефлексов, в результате возникает пищевая, оборонительная, половая и другие формы деятельности. Доминантный центр возбуждения обладает рядом свойств:

1) для его нейронов характерна высокая возбудимость, что способствует конвергенции к ним возбуждений из других центров;

2) его нейроны способны суммировать приходящие возбуждения;

3) возбуждение характеризуется стойкостью и инертностью, т.е. способностью сохраняться даже тогда, когда стимул, вызвавший образование доминанты, прекратил действие.

4. Принцип обратной связи. Процессы, происходящие в ЦНС, невозможно координировать, если отсутствует обратная связь, т.е. данные о результатах управления функциями. Обратная связь позволяет соотнести выраженность изменений параметров системы с ее работой.

Связь выхода системы с ее входом с положительным коэффициентом усиления называется положительной обратной связью, а с отрицательным коэффициентом — отрицательной обратной связью. Положительная обратная связь в основном характерна для патологических ситуаций.

Отрицательная обратная связь обеспечивает устойчивость системы (ее способность возвращаться к исходному состоянию после прекращения влияния возмущающих факторов). Различают быстрые (нервные) и медленные (гуморальные) обратные связи. Механизмы обратной связи обеспечивают поддержание всех констант гомеостаза.

5. Принцип реципрокности. Он отражает характер отношений между центрами, ответственными за осуществление противоположных функций (вдоха и выдоха, сгибание и разгибание конечностей), и заключается в том, что нейроны одного центра, возбуждаясь, тормозят нейроны другого и наоборот.

6. Принцип субординации (соподчинения). Основная тенденция в эволюции нервной системы проявляется в сосредоточении функций регуляции и координации в высших отделах ЦНС — це-фализация функций нервной системы. В ЦНС имеются иерархические взаимоотношения — высшим центром регуляции является кора больших полушарий, базальные ганглии, средний, продолговатый и спинной мозг подчиняются ее командам.

7. Принцип компенсации функций. ЦНС обладает огромной компенсаторной способностью, т.е. может восстанавливать некоторые функции даже после разрушения значительной части нейронов, образующих нервный центр (см. пластичность нервных центров).

При повреждении отдельных центров их функции могут перейти к другим структурам мозга, что осуществляется при обязательном участии коры больших полушарий.

У животных, которым после восстановления утраченных функций удаляли кору, вновь происходила их утрата.

При локальной недостаточности тормозных механизмов или при чрезмерном усилении процессов возбуждения в том или ином нервном центре определенная совокупность нейронов начинает автономно генерировать патологически усиленное возбуждение — формируется генератор патологически усиленного возбуждения.

При высокой мощности генератора возникает целая система функционирующих в едином режиме неирональных образований, что отражает качественно новый этап в развитии заболевания; жесткие связи между отдельными составными элементами такой патологической системы лежат в основе ее устойчивости к различным лечебным воздействиям.

Его суть состоит в том, что структура ЦНС, формирующая функциональную посылку, подчиняет себе те отделы ЦНС, к которым она адресована и образует вместе с ними патологическую систему, определяя характер ее деятельности. Такая система является биологически отрицательной.

Если в силу тех или иных причин патологическая система исчезает, то образование ЦНС, игравшее главную роль, теряет свое детерминантное значение.

2. Пищеварение в полости рта и глотание (его фазы). Рефлекторная регуляция этих актов

Источник: https://studopedia.su/17_30099_biomehanika-vidoha.html

Биомеханика вдоха и выдоха

Биомеханика вдоха и выдоха

Дыхание

Дыхание является одной из жизненно важных функций организма, направленной на поддержание оптимального уровня окислительно-восстановительных процессов в клетках. Дыхание — сложный биологический процесс, который обеспечивает доставку кислорода тканям, использование его клетками в процессе метаболизма и удаление образовавшегося углекислого газа.

Весь сложный процесс дыхания можно разделить на три основных этапа: внешнее дыхание, транспорт газов кровью и тканевое дыхание.

Внешнее дыхание — газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание в свою очередь можно разделить на два этапа:

• обмен газов между атмосферным и альвеолярным воздухом;

• газообмен между кровью легочных капилляров и альвеолярный воздухом (обмен газов в легких).

Транспорт газов кровью. Кислород и углекислый газ в свободном растворенном состоянии переносятся в незначительном количестве, основной объем этих газов транспортируется в связанном состоянии.

Основным переносчиком кислорода является гемоглобин. С помощью гемоглобина транспортируется также до 20% углекислого газа (карбгемоглобин).

Остальная часть углекислого газа переносится в виде бикарбонатов плазмы крови.

Внутреннее или тканевое дыхание. Этот этап дыхания можно разделить на два:

• обмен газов между кровью и тканями;

• потребление клетками кислорода и выделение углекислого газа.

Внешнее дыхание осуществляется циклически и состоит из фазы вдоха, выдоха и дыхательной паузы. У человека частота дыхательных движений в среднем равна 16-18 в одну минуту.

Биомеханика вдоха и выдоха

Вдох начинается с сокращения дыхательных (респираторных) мышц.

Мышцы, сокращение которых приводит к увеличению объема грудной полости, называются инспираторными (наружные межреберные, мышечные волокна диафрагмы, вспомогательные-грудинные, лестничные, грудинно-ключично-сосцевидные), а мышцы, сокращение которых приводит к уменьшению объема грудной полости, называются экспираторными (внутренние межреберные, вспомогательные – мышцы живота).

Основной инспираторной мышцей является мышца диафрагмы. Сокращение мышцы диафрагмы приводит к тому, что купол ее уплощается, внутренние органы оттесняются вниз, что приводит к увеличению объема грудной полости в вертикальном направлении. Сокращение наружных межреберных и межхрящевых мышц приводит к увеличению объема грудной полости в сагитальном и фронтальном направлениях.

Легкие покрыты серозной оболочкой — плеврой, состоящей из висцерального и париетального листков. Париетальный листок соединен с грудной клеткой, а висцеральный — с тканью легких. При увеличении объема грудной клетки, в результате сокращения инспираторных мышц, париетальный листок последует за грудной клеткой.

В результате появления адгезивных сил между листками плевры, висцеральный листок последует за париетальным, а вслед за ними и легкие.

Это приводит к возрастанию отрицательного давления в плевральной полости и к увеличению объема легких, что сопровождается снижением в них давления, оно становится ниже атмосферного и воздух начинает поступать в легкие — происходит вдох.

Между висцеральным и париетальным листками плевры находится щелевидное пространство, которое называется плевральной полостью. Давление в плевральной полости всегда ниже атмосферного, его называют отрицательным давлением.

Величина отрицательного давления в плевральной полости равна: к концу максимального выдоха — 1-2 мм рт. ст., к концу спокойного выдоха — 2-3 мм рт. ст., к концу спокойного вдоха -5-7 мм рт. ст.

, к концу максимального вдоха — 15-20 мм рт. ст.

Отрицательное давление в плевральной полости обусловлено так называемой эластической тягой легких — силой, с которой легкие постоянно стремятся уменьшить свой объем. Эластическая тяга легких обусловлена двумя причинами:

• наличием в стенке альвеол большого количества эластических волокон;

• поверхностным натяжением пленки жидкости, которой покрыта внутренняя поверхность стенок альвеол.

Вещество, покрывающее внутреннюю поверхность альвеол называется сурфактантом.

Сурфактант имеет низкое поверхностное натяжение и стабилизирует состояние альвеол, а именно, при вдохе он предохраняет альвеолы от перерастяжения (молекулы сурфактанта расположены далеко друг от друга, что сопровождается повышением величины поверхностного натяжения), а при выдохе — от спадения (молекулы сурфактанта расположены близко друг к другу, что сопровождается снижением величины поверхностного натяжения).

Значение отрицательного давления в плевральной полости в акте вдоха проявляется при поступлении воздуха в плевральную полость, т. е. пневмотораксе.

Если в плевральную полость поступает небольшое количество воздуха, легкие частично спадаются, но вентиляция их продолжается. Такое состояние называется закрытым пневмотораксом.

Через некоторое время воздух из плевральной полости всасывается и легкие расправляются.

При нарушении герметичности плевральной полости, например, при проникающих ранениях грудной клетки или при разрыве ткани легкого в результате его поражения каким-либо заболеванием, плевральная полость сообщается с атмосферой и давление в ней становится равным атмосферному, легкие спадаются полностью, их вентиляция прекращается. Такой пневмоторакс называется открытым. Открытый двусторонний пневмоторакс несовместим с жизнью.

Частичный искусственный закрытый пневмоторакс (введение в плевральную полость с помощью иглы некоторого количества воздуха) применяется с лечебной целью, например, при туберкулезе частичное спадение пораженного легкого способствует заживлению патологических полостей (каверн).

При глубоком дыхании в акте вдоха участвуют ряд вспомогательных дыхательных мышц, к которым относятся: мышцы шеи, груди, спины. Сокращение этих мышц вызывает перемещение ребер, что оказывает содействие инспираторным мышцам.

При спокойном дыхании вдох осуществляется активно, а выдох пассивно. Силы, обеспечивающие спокойный выдох:

• сила тяжести грудной клетки;

• эластическая тяга легких;

• давление органов брюшной полости;

• эластическая тяга перекрученных во время вдоха реберных хрящей.

В активном выдохе принимают участие внутренние межреберные мышцы, задняя нижняя зубчатая мышца, мышцы живота.

Легочные объемы

Для оценки вентиляционной функции легких, состояния дыхательных путей применяются методы исследования: пневмография, спирометрия, спирография. С помощью спирографа можно определить и записать величины легочных объемов воздуха, проходящих через воздухоносные пути человека.

При спокойном дыхании человек вдыхает и выдыхает около 500 мл воздуха. Этот объем воздуха называется дыхательным объемом.

После спокойного вдоха человек может еще максимально вдохнуть некоторое количество воздуха — это резервный объем вдоха, он равен 1800-2000 мл.

После спокойного выдоха можно еще максимально выдохнуть некоторое количество воздуха — это резервный объем выдоха, он равен 1300-1500 мл.

Количество воздуха, которое человек может максимально выдохнуть после самого глубокого вдоха называется жизненной емкостью легких (ЖЕЛ).

Она складывается из дыхательного объема, резервного объема вдоха и резервного объема выдоха и равна в среднем 3500-4000 мл.

Величина ЖЕЛ может изменяться в значительных пределах и зависит от возрастных особенностей организма, степени тренированности человека, наличия сердечно-легочной патологии.

После максимально глубокого выдоха в легких остается некоторое количество воздуха — это остаточный объем, он равен 1300 мл.

Объем воздуха, который находится в легких к концу спокойного выдоха называется функциональной остаточной емкостью, или альвеолярным воздухом. Он состоит из резервного объема выдоха и остаточного объема.

Максимальное количество воздуха, которое может находиться в легких после глубокого вдоха называется общей емкостью легких, она равна сумме остаточного объема и ЖЕЛ.

Воздух находится не только в альвеолах, но и в воздухоносных путях — полости носа, носоглотки, трахеи, бронхов. Воздух, находящийся в воздухоносных путях не участвует в газообмене, поэтому просвет воздухоносных путей называется мертвым пространством. Объем анатомического мертвого пространства около 150 мл.

Хотя в воздухоносных путях не происходит газообмена они необходимы для нормального дыхания, так как в них происходит увлажнение, согревание, очищение от пыли и микроорганизмов вдыхаемого воздуха.

При раздражении пылевыми частицами и накопившейся слизью рецепторов носоглотки, гортани и трахеи возникает кашель, а при раздражении рецепторов полости носа — чихание.

Кашель и чихание являются защитными дыхательными рефлексами.

Вентиляция легких. Вентиляция легких определяется объемом воздуха, вдыхаемого или выдыхаемого в единицу времени.

Количественной характеристикой легочной вентиляции является минутный объем дыхания (МОД) — объем воздуха, проходящего через легкие за одну минуту. В состоянии покоя МОД равен 6-9 л.

При физической нагрузке его величина резко возрастает и составляет 25-30 л.

Так как газообмен между воздухом и кровью осуществляется в альвеолах, то важна не общая вентиляция легких, а вентиляция альвеол. Альвеолярная вентиляция меньше вентиляции легких на величину мертвого пространства.

Если из величины дыхательного объема вычесть объем мертвого пространства, то получится объем воздуха, содержащегося в альвеолах, а если эту величину умножить на частоту дыхания, получим альвеолярную вентиляцию.

Следовательно, эффективность альвеолярной вентиляции выше при более глубоком и редком дыхании, чем при частом и поверхностном.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха.Атмосферный воздух, которым дышит человек, имеет относительно постоянный состав. В выдыхаемом воздухе меньше кислорода и больше углекислого газа, в альвеолярном воздухе еще меньше кислорода и больше углекислого газа.

Вдыхаемый воздух содержит 20,93% кислорода и 0,03% углекислого газа, выдыхаемый воздух — кислорода 16%, углекислого газа 4,5% и в альвеолярном воздухе содержится 14% кислорода и 5,5% углекислого газа.

В выдыхаемом воздухе углекислого газа содержится меньше, чем в альвеолярном.

Это связано с тем, что к выдыхаемому воздуху примешивается воздух мертвого пространства с низким содержанием углекислого газа и его концентрация уменьшается.

Источник: https://megaobuchalka.ru/3/42473.html

Внешнее дыхание. Биомеханика дыхания. Процесс дыхания. Биомеханика вдоха. Как люди дышат?

Биомеханика вдоха и выдоха

Оглавление темы «Дыхание. Дыхательная система.»:
1. Дыхание. Дыхательная система. Функции дыхательной системы.
2. Внешнее дыхание. Биомеханика дыхания. Процесс дыхания. Биомеханика вдоха. Как люди дышат?
3. Выдох. Биомеханизм выдоха. Процесс выдоха. Как происходит выдох?
4.

Изменение объема легких во время вдоха и выдоха. Функция внутриплеврального давления. Плевральное пространство. Пневмоторакс.
5. Фазы дыхания. Объем легкого ( легких ). Частота дыхания. Глубина дыхания. Легочные объемы воздуха. Дыхательный объем. Резервный, остаточный объем. Емкость легких.
6.

Факторы, влияющие на легочный объем в фазу вдоха. Растяжимость легких ( легочной ткани ). Гистерезис.
7. Альвеолы. Сурфактант. Поверхностное натяжение слоя жидкости в альвеолах. Закон Лапласа.
8. Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток.
9.

Зависимость «поток—объем» в легких. Давление в дыхательных путях при выдохе.
10. Работа дыхательных мышц в течение дыхательного цикла. Работа дыхательных мышц при глубоком дыхании.

Газообмен между атмосферным воздухом и альвеолярным пространством легких происходит в результате циклических изменений объема легких в течение фаз дыхательного цикла. В фазу вдоха объем легких увеличивается, воздух из внешней среды поступает в дыхательные пути и затем достигает альвеол.

Напротив, в фазу выдоха происходит уменьшение объема легких и воздух из альвеол через дыхательные пути выходит во внешнюю среду. Увеличение и уменьшение объема легких обусловлены биомеханическими процессами изменения объема грудной полости при вдохе и выдохе.

Биомеханика дыхания. Биомеханика вдоха

Рис. 10.1. Влияние сокращения диафрагмальной мышцы на объем грудной полости. Сокращение диафрагмальной мышцы при вдохе (пунктирная линия) вызывает опускание диафрагмы вниз, смещение органов брюшной полости вниз и вперед. В результате увеличивается объем грудной полости.

Увеличение объема грудной полости при вдохе происходит в результате сокращения инспираторных мышц: диафрагмы и наружных межреберных. Основной дыхательной мышцей является диафрагма, которая находится в нижней трети грудной полости и разделяет грудную и брюшную полости.

При сокращении диафрагмальной мышцы диафрагма движется вниз и смещает органы брюшной полости вниз и кпереди, увеличивая объем грудной полости преимущественно по вертикали (рис. 10.1).

Увеличению объема грудной полости при вдохе способствует сокращение наружных межреберных мышц, которые поднимают грудную клетку вверх, увеличивая объем грудной полости. Этот эффект сокращения наружных межреберных мышц обусловлен особенностями прикрепления мышечных волокон к ребрам — волокна идут сверху вниз и сзади кпереди (рис. 10.2).

При подобном направлении мышечных волокон наружных межреберных мышц их сокращение поворачивает каждое ребро вокруг оси, проходящей через точки сочленения головки ребра с телом и поперечным отростком позвонка. В результате этого движения каждая нижележащая реберная дуга поднимается вверх больше, чем опускается вышерасположенная.

Одновременное движение вверх всех реберных дуг приводит к тому, что грудина поднимается вверх и кпереди, а объем грудной клетки увеличивается в сагиттальной и фронтальной плоскостях. Сокращение наружных межреберных мышц не только увеличивает объем грудной полости, но и препятствует опусканию грудной клетки вниз.

Например, у детей, имеющих неразвитые межреберные мышцы, грудная клетка уменьшается в размере во время сокращения диафрагмы (парадоксальное движение).

Рис. 10.2. Направление волокон наружных межреберных мышц и увеличение объема грудной полости при вдохе. а — сокращение наружных межреберных мышц при вдохе поднимает нижнее ребро больше, чем опускает вниз верхнее. В результате реберные дуги поднимаются вверх и увеличивают (б) объем грудной полости в сагиттальной и фронтальной плоскости.

При глубоком дыхании в биомеханизме вдоха, как правило, участвует вспомогательная дыхательная мускулатура — грудино-ключично-сосцевидные и передние лестничные мышцы, и их сокращение дополнительно увеличивает объем грудной клетки. В частности, лестничные мышцы поднимают верхние два ребра, а грудино-ключично-сосцевидные — поднимают грудину.

Вдох является активным процессом и требует расхода энергии при сокращении инспираторных мышц, которая затрачивается на преодоление эластического сопротивления относительно ригидных тканей грудной клетки, эластического сопротивления легко растяжимой легочной ткани, аэродинамического сопротивления дыхательных путей потоку воздуха, а также на повышение внутриабдоминального давления и возникающего при этом смещения органов брюшной полости книзу.

— Также рекомендуем «Выдох. Биомеханизм выдоха. Процесс выдоха. Как происходит выдох?»

Источник: https://meduniver.com/Medical/Physiology/417.html

Внешнее дыхание. Биомеханика вдоха и выдоха. Факторы, обуславливающие эластическую тягу легких. Роль сурфактанта в вентиляции легких

Биомеханика вдоха и выдоха

Дыханием называется комплекс физиологических процессов, обеспечивающих обмен кислорода и углекислого газа между клетками организма и внешней средой. Оно включает следующие этапы:

1. Внешнее дыхание или вентиляция. Это обмен дыхательных газов между атмосферным воздухом и альвеолами.

2. Диффузия газов в легких, т.е. их обмен между воздухом альвеол и кровью.

3. Транспорт газов кровью.

4. Диффузия газов в тканях. Обмен газов между кровью и внутриклеточной жидкостью.

5. Клеточное дыхание. Поглощение кислорода и образование углекислого газа в клетках.

Механизм внешнего дыхания.

Внешнее дыхание осуществляется в результате ритмических движений грудной клетки. Дыхательный цикл состоит из фаз вдоха (inspiratio) и выдоха (exspiratio), между которыми отсутствует пауза. В покое у взрослого человека частота дыхательных движений 16-20 в минуту. Вдох это активный процесс.

При спокойном вдохе сокращаются наружные межреберные и межхрящевые мышцы. Они приподнимают ребра, а грудина отодвигается вперед. Это ведет к увеличению сагиттального и фронтального размеров грудной полости. Одновременно сокращаются мышцы диафрагмы. Ее купол опускается, и органы брюшной полости сдвигается вниз, в стороны и вперед.

За счет этого грудная полость увеличивается и в вертикальном направлении. После окончания вдоха дыхательные мышцы расслабляются. Начинается выдох. Спокойный выдох – пассивный процесс. Во время него происходит возвращение грудной клетки в исходное состояние.

Это происходит под действием ее собственного веса, натянутого связочного аппарата и давления на диафрагму органов брюшной полости. При физической нагрузке, патологических состояниях, сопровождающихся одышкой (туберкулез легких, бронхиальная астма и т.д.) возникает форсированное дыхание.

В акт вдоха и выдоха вовлекаются вспомогательные мышцы. При форсированном вдохе дополнительно сокращаются грудино-ключично-сосцевидные, лестничные, грудные и трапециевидные мышцы. Они способствуют дополнительному поднятию ребер. При форсированном выдохе сокращаются внутренние межреберные мышцы, которые усиливают опускание ребер, т.е.

это активный процесс. Различают грудной и брюшной типы дыхания. При первом дыхание в основном осуществляется за счет межреберных мышц, при втором – за счет мышц диафрагмы. Грудной или реберный тип дыхания характерен для женщин. Брюшной или диафрагмальный – для мужчин. Физиологически более выгоден брюшной тип, т.к.

он осуществляется с меньшей затратой энергии. Кроме того, движения органов брюшной полости при дыхании препятствует их воспалительным заболеваниям. Иногда встречается смешанный тип дыхания.

Несмотря на то, что легкие не сращены с грудной стенкой, они повторяют ее движения. Это объясняется тем, что между ними имеется замкнутая плевральная щель. Изнутри стенка грудной полости покрыта париетальным листком плевры, а легкие ее висцеральным листком. В межплевральной щели находится небольшое количество серозной жидкости.

При вдохе объем грудной полости возрастает, а так как плевральная полость изолирована от атмосферы, то давление в ней понижается. Легкие расширяются, давление в альвеолах становится ниже атмосферного. Воздух через трахею и бронхи поступает в альвеолы. Во время выдоха объем грудной клетки уменьшается. Давление в плевральной щели возрастает, воздух выходит из альвеол.

Движения или экскурсии легких обеспечиваются колебаниями отрицательного межплеврального давления. После спокойного выдоха оно ниже атмосферного на 4-6 мм рт ст. На высоте спокойного вдоха на 8-9 мм рт ст. После форсированного выдоха оно ниже на 1-3 мм рт ст., а форсированного вдоха на 10-15 мм рт ст.

Наличие отрицательного межплеврального давления объясняется эластической тягой легких. Это сила, с которой легкие стремятся сжаться к корням, противодействуя атмосферному давлению. Она обусловлена упругостью легочной ткани, которая содержит много эластических волокон. Кроме того, эластическую тягу увеличивает поверхностное натяжение альвеол.

Изнутри они покрыты пленкой сурфактанта. Это липопротеид, вырабатываемый митохондриями альвеолярного эпителия. Благодаря особому строению его молекул, на вдохе он повышает поверхностное натяжение альвеол, а на выдохе, когда их размеры уменьшаются, наоборот понижает. Это препятствует спаданию альвеол, т.е. возникновению ателектаза.

При генетической патологии, у некоторых новорожденных нарушается выработка сурфактанта. Возникает ателектаз и ребенок гибнет. В старости, а также при некоторых хронических заболеваниях легких, количество эластических волокон возрастает. Это явление называется пневмофиброзом. Дыхательные экскурсии затрудняются.

При эмфиземе эластические волокна наоборот разрушаются, и эластическая тяга легких снижается. Альвеолы раздуваются, величина экскурсии легких также уменьшается. При попадании воздуха в плевральную полость возникает пневмоторакс. Различают его следующие виды:

1. По механизму возникновения: патологический (рак легких, абсцесс, проникающее ранение грудной клетки) и искусственный (лечение туберкулеза).

2. В зависимости от того, какой листок плевры поврежден, выделяют наружный и внутренний пневмоторакс.

3. По степени сообщения с атмосферой различают открытый пневмоторакс, когда плевральная полость постоянно сообщается с атмосферой. Закрытый, если произошло однократное попадание воздуха. Клапанный, когда на вдохе воздух из атмосферы входит в плевральную щель, а на выдохе отверстие закрывается.

4. В зависимости от стороны повреждения – односторонний (правосторонний, левосторонний), двусторонний.

Пневмоторакс является опасным для жизни осложнением. В результате него легкое спадается и выключается из дыхания. Особенно опасен клапанный пневмоторакс.

Билет 22

23. Гормональная регуляция обмена кальция в организме. Паратиреоидные гормоны, кальцитонин, кальцитриол, их функции

Одновременно с механизмом, обеспечиваемым существованием обмениваемых солей кальция в костях, который работает как буферная система по отношению к концентрации ионов кальция в межклеточной жидкости, оба гормона (паратгормон и кальцитонин) начинают действовать в течение 3-5 мин после быстрого изменения концентрации ионов кальция.

Скорость секреции ПТГ возрастает; как уже объяснялось, это запускает в действие многочисленные механизмы, направленные на снижение концентрации ионов кальция. Одновременно со снижением концентрации ПТГ концентрация кальцитонина возрастает у молодых животных и, вероятно, у маленьких детей (и у взрослых, но в меньшей степени).

Кальцитонин вызывает быстрое поступление кальция в кости, а также, возможно, и во многие клетки других тканей, поэтому у очень молодых животных избыток кальцитонина может быть причиной того, что высокая концентрация ионов кальция возвращается к норме значительно быстрее, чем это может осуществить в одиночку буферная система, опосредованная механизмом легкообмениваемых солей кальция. В случае продолжительно существующего избытка кальция или его дефицита только влияния ПТГ оказываются действительно важными в нормализации концентрации ионов кальция в плазме. В случае длительного дефицита кальция в рационе ПТГ часто может стимулировать выход кальция из костей в количествах, достаточных для поддержания нормальной его концентрации в плазме в течение одного года, но очевидно, что даже этот источник кальция может иссякнуть. По обнаруживаемому эффекту кости можно считать буферным резервом кальция, которым управляет паратгормон. Если кости в качестве источника кальция иссякнут либо, напротив, переполнятся кальцием, в роли долговременного механизма, управляющего концентрацией кальция во внеклеточной жидкости, выступит ПТГ и витамин D, регулирующие всасывание кальция в кишечнике и его экскрецию с мочой.

Если паратиреоидные железы не секретируют достаточное количество паратгормона, это приводит к снижению вымывания остеоцитами легкообмениваемого кальция из костей при почти полной и повсеместной инактивации остеокластов.

В результате абсорбция кальция из костей настолько уменьшается, что это приводит к снижению уровня кальция в жидких средах организма.

Вследствие того, что кальций и фосфаты перестают вымываться из костей, кости обычно остаются прочными.

Кальцитонин — пептидный гормон, состоящий из 12 аминокислот, физиологическая функция которого заключается в регуляции обмена кальция и фосфора. Интерес к этому гормону объясняется, в первую очередь, его участием в обеспечении относительно постоянного уровня кальция.

Основным и непосредственным фактором, который действует на щитовидную железу и активизирует синтез выделения кальцитонина. есть концентрация кальция в сыворотке кропи. Повышение уровня кальция в крови, особенно его ионизированной формы, усиливает секрецию кальцитонина, а снижение — угнетает.

Опосредованный путь регуляции секреции кальцитонина связан с секрецией гастрина и некоторых других энторогормонов. Уменьшение уровня кальция в пищеварительном тракте способствует секреции гастрина, что, в свою очередь, приводит к усилению синтеза и выделения кальцитонина щитовидной железой.

Кальцитонин через специфические рецепторы (в костях, почках) воздействует на цАМФ.

В результате, прежде всего, тормозится резорбция костей и стимулируется их минерализацию.в частности, проявляется понижением уровня кальция и фосфора в сыворотке крови и экскреции гидроксипролина.

Паратиреоидный гормон (ПГТ)является функциональным антагонистом кальцитонина: первый обеспечивает увеличение состава кальция, а второй — его снижение. Низкая концентрация кальция в плазме крови стимулирует поступление в кровь значительного количества ПТГ.

который увеличивает реабсорбцию кальция в канальцах почек и секрецию фосфатов, а в костной ткани — ускорение процесса резорбции и освобождения кальция в межклеточное пространство.
На уровне клеток кальцитонин влияет на транспорт кальция через ее мембрану.

Он стимулирует поглощение кальция митохондриями и тем самым задерживает отток кальция из клеток. Этот процесс связан с активностью аденозинтрифосфорной кислоты (АТФ) клеточной мембраны и зависит от соотношения натрия и калия.

Кальцитонин влияет на органический состав кости: угнетает распад коллагена, что проявляется уменьшением экскреции с мочой оксипролина

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник: https://megalektsii.ru/s19741t6.html

Uchebnik-free
Добавить комментарий