27. Модулирующая система мозга

Модулирующие системы мозга

27. Модулирующая система мозга



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса — ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший «Салат из свеклы с чесноком»

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствования в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью. Только в условиях оптимального бодрствования человек может наилучшим образом принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать деятельность, осуществлять контроль над ней.

И.П. Павлов неоднократно возвращался к вопросам о решающей роли в реализации полноценной условнорефлекторной деятельности оптимального тонуса мозговой коры, необходимости высокой подвижности: нервных процессов, позволяющих с легкостью переходить от одной деятельности к другой.

В условиях оптимальной возбудимости коры нервные процессы характеризуются известной концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и, наконец, высокой подвижностью нервных процессов, которые обусловливают протекание каждой организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга. Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система.

К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга с ее активирующими и инактивирующими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга.

К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

Эмоции. Функции и теории эмоций.

Структура сна.

Долгое время считалось, что после небольшого периода засыпания нервная система человека приходит в состояние торможения на 7-8 часов. Затем торможение ЦНС сменяется возбуждением и человек просыпается.

Так сон и бодрствование периодически сменяют друг друга, и основным отличием сна от бодрого состояния стали разлитое торможение коры головного мозга, имеющее охранительное значение и восстанавливающее работоспособность клеток нервной системы в течение сна.

Во время сна большая часть нервных клеток не отдыхает, а продолжает работать, только в другом, более синхронизированном режиме.

Оказалось, что структура физиологического сна достаточно сложна, и в течение ночи происходит 5-6 раз смена двух различных по своим физиологическим характеристикам фаз, или стадий сна, В физиологическом сне человека и животных различают по крайней мере две фазы, обозначаемые как фаза медленного сна (ФМС) и фаза быстрого сна (ФБС) .

В настоящее время показано, что период бодрствования сменяется стадией медленного сна, которая длится 60-90 минут и переходит в стадию быстрого сна (5-10 минут). Затем снова наступает медленный сон. Так они сменяют друг друга в течение ночи, причем постепенно падает глубина ФМС и растет длительность ФБС. Таким образом, структура сна может быть выражена так:

У здоровых людей за ночь имеют место 4-6 завершенных циклов (ФМС+ФБС). Следует учесть, что наиболее глубокая стадия медленного сна в норме ярче всего представлена в 1 и 2 циклах.

Медленный сон занимает у взрослого человека 75-80% длительности физиологического сна, а быстрый — 20-25%. У новорожденного на долю ФБС приходится более 50%, у ребенка до 2 лет — 30-40%.

C 5 лет формируются свойственные взрослым соотношения ФМС и ФБС.

Стадии сна

А. Переходная стадия -альфа-ритм меняющейся амплитуды

В. Стадия дремоты — постепенное замещение альфа-ритма низко-амплитудными тета-волнами

С. Стадия сонных веретен — между двух-трехфазными медленными коле-баниями возникают сонные веретена высокой амплитуды и частоты (12-16 гц)

Д. Стадия появления дельта-волн — до 50% ритмики периодически занимают дельта-волны

Е. Стадия глубокого дельта-сна -более 50% ритмики занимают дельта-волны

Помимо указанных сдвигов на ЭЭГ, ЭОГ, ЭМГ, во время медленного сна отмечается снижение интенсивности всех вегетативных функций.

Быстрый сон характеризуется полным отсутствием активности мышц ли-ца и шеи (в других мышцах существенного изменения тонуса по сравнению с глубокими стадиями медленного сна нет), появлением быстрых движений глаз (БДГ) на ЭОГ, единичных или группирующихся в пачки, продолжительностью каждое 0,5-1,5 сек.

На ЭЭГ картина, соответствующая стадии В, может регистрироваться и альфа-ритм. Отмечается нерегулярность вегетативных показателей, которая обозначается термином «вегетативная буря» — изменяется частота дыхания и сердцебиения, наблюдается активизация моторики ЖКТ, подъем АД, выброс гормонов.

Ниже мы поговорим об этом более подробно.

Быстрый сон глубок, и пробудить челвека из этой стадии не легче, чем из глубокого медленного сна. При пробуждении из быстрого сна у подавляющего числа людей можно получить отчет о ярких сновидениях

Источник: https://megapredmet.ru/1-14340.html

Послушание собаки | Страница 10 | Онлайн-библиотека

27. Модулирующая система мозга

В третичных (ассоциативных) зонах происходит встреча афферентных (одномодальных, разномодальных и неспецифических) потоков информации. Подавляющее количество ассоциативных нейронов отвечает на обобщенные признаки раздражителей: количество, пространственное положение, отношение и т. д.

Предполагается существование клеточных «ансамблей» нейронов, выделяющих комплексные признаки раздражителя — предмета.

Считается доказанным наличие в центральной нервной системе корковых нейронов с простыми, сложными и сверхсложными рецептивными полями, детектирующие все более сложные признаки раздражителей.

Среди них выделяются так называемые гностические нейроны, которые обеспечивают узнавание комплекса признаков раздражителя (например, узнавание лица с одного взгляда, знакомого голоса, знакомого запаха, характерного жеста и т. д.).

У высших животных механизмы, выделяющие элементарные признаки раздражителей, составляют лишь начальное звено в механизме восприятия и дифференцировки стимулов.

В высших сенсорных (вторичных и ассоциативных) зонах коры большую роль играет закон убывающей специфичности, который является обратной стороной принципа иерархической организации нейронов анализатора, т. е.

здесь выделяется главное (смысловое) значение для организма сигнала-раздражителя, а не только его физические свойства.

Модулирующие системы мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствования по отношению к выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с наличной потребностью.

Первый источник активации модулирующей системы мозга, а следовательно, и поведения — внутренняя активность самого организма или его потребности.

Любые отклонения показателей жизнедеятельности организма от жизненно важных показателей, или констант (в результате изменения нервных или гуморальных влияний или вследствие избирательного возбуждения различных отделов мозга), приводят к выборочному включению в работу определенных органов и процессов, совокупная работа которых обеспечивает достижение оптимального результата. При отклонениях от констант в специальных отделах мозга накапливается или тормозится так называемое мотивационное возбуждение, которое определяет внешнее поведение (например, пищевое).

Второй источник активации связан с воздействием раздражителей внешней среды. Определенные раздражители могут быть ассоциированы с инстинктивным действием или с удовлетворением какой-либо потребности в результате накопления индивидуального опыта. Ограничение контакта с внешней средой приводит к значительному снижению тонуса (возбудимости, работоспособности) нейронов коры мозга.

Часть непрерывного потока сенсорных сигналов неспецифически активирует работу головного мозга и служит необходимым условием для поддержания бодрствования и осуществления любых поведенческих реакций. Помимо этого, неспецифическая активация — важное условие для формирования селективных свойств нейронов коры в процессе онтогенетического созревания и обучения.

Установлено, что кора головного мозга, наряду со специфической деятельностью, оказывает неспецифическое активирующее и тормозящее влияние на нижележащие нервные образования, и это может рассматриваться как третий источник активации центральной нервной системы.

Двигательная система мозга

Двигательные области коры головного мозга выполняют функцию «запуска» и контроля двигательной деятельности. Особенность этих областей в том, что происходит синтез возбуждения от разных анализаторов с биологически значимыми сигналами и мотивационными влияниями.

Наиболее важная часть третьего функционального блока мозга — третичные зоны. Считают, что они представляют собой блок программирования намерений, оценки выполнения действий и коррекции допущенных ошибок.

Третичные зоны (ассоциативные поля) не только получают информацию от всех отделов мозга, но и сами могут посылать команды в них — в этом их особенность.

Кроме того, эти зоны участвуют в сложных процессах анализа и синтеза, обеспечивают выполнение сложных функций и формирование сложнейших временных связей.

Потребности и мотивации

Организм животных и человека время от времени испытывает необходимость в каких-либо веществах или продуктах, а также в создании определенных ситуаций или в накоплении информации, нужных ему для организации текущего или будущего поведения, что в конечном итоге обеспечивает сохранение его жизни и возможность оставить потомство.

Такая необходимость в чем-либо называется потребностью.

Например, чтобы заставить собаку сесть, мы довольно сильно нажимаем ей на круп в области крестца, вызывая тем самым неприятные ощущения от давления и, естественно, потребность избавиться от него (оборонительную потребность): в итоге собака садиться. Считается, что именно потребность служит причиной поведения, а беспричинного поведения не бывает.

Возникающая потребность вызывает изменение поведения, только если достигнет определенного уровня. Например, при начинающемся недостатке питательных веществ понижается содержание глюкозы в крови, что регистрируется специальными рецепторами. Незначительная потеря быстро восстанавливается за счет оперативных резервов организма, т. е.

гомеостатически и внешне никак не проявляется. По мере истощения резервов организм начинает испытывать специфическое чувство голода, которое заставляет его изменить поведение в сторону удовлетворения аппетита. При этом в центральной нервной системе развиваются и такие процессы, которые организуют и поддерживают нужное поведение.

Эти процессы и соответствующая им деятельность нервной системы называются мотивацией.

Состояние мотивации отражает степень выраженности и качество потребности — это психический ее эквивалент. Можно определить мотивацию и как осознанное желание.

Выступая причиной поведения, потребность одновременно является и причиной научения, ведь, стремясь удовлетворить потребность, животное осваивает навыки, необходимые для этого, добиваясь наибольшей их эффективности.

Цель научения — удовлетворить насущную потребность. В конечном счете это способствует сохранению и поддержанию жизни. Без такой цели и поведение, и научение становятся бессмысленными.

Существует несколько классификаций потребностей. Наиболее удачной считается классификация известного российского ученого П. В. Симонова, который разделил потребности на 3 основные группы.

1. Потребности жизнеобеспечения (витальные потребности) — направлены на сохранение организма. Это потребности в пище, питье, обороне (при необходимости), сне, двигательной нагрузке, положительных ощущениях и т. п. Неудовлетворение какой-либо из них ведет к гибели животного.

2. Зоосоциальные потребности — обеспечивают сосуществование животного с другими животными и способствуют сохранению не только индивидуума, но и вида.

Различают половые, родительские, территориальные потребности, а также потребность в группе и формировании групповых иерархических взаимоотношений.

Зоосоциальные потребности для своей реализации требуют участия социальных партнеров своего или другого вида.

3. Потребности саморазвития — ориентированы на будущее. Их роль заключается в подготовке организма к возможным условиям существования. Сюда относят потребность в свободе, игре, новой информации, имитационную (подражательную) потребность и др.

Круг потребностей, а также некоторые способы их удовлетворения заложены в генетической программе животного. Иногда отмечается преобладание какой-либо одной потребности над другими в силу наследственных причин или в результате соответствующего воспитания. Наиболее важны витальные потребности, и главная из них — оборонительная.

Важность и целесообразность использования соответствующих потребностей и мотиваций для дрессировочного процесса заключается в их биологически значимых свойствах. Биологическое значение мотиваций заключается в том, что они:

— увеличивают двигательную активность животного в ответ на различные раздражители-стимулы, в том числе и на индифферентные, т. е. вначале безразличные для животного (возрастание моторной активности, например, особенно важно при использовании оперантного метода дрессировки и способов, связанных с отбором поведения);

10

Источник: http://litrus.net/book/read/125321?p=10

Модулирующая система мозга

27. Модулирующая система мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований.

Он оптимизирует уровень бодрствования в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью.

Только в условиях оптимального бодрствования человек может наилучшим образом принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать деятельность, осуществлять контроль над ней.

И. П.

Павлов неоднократно возвращался к вопросам о решающей роли в реализации полноценной условно-рефлекторной деятельности оптимального тонуса мозговой коры, необходимости высокой подвижности нервных процессов, позволяющих с лёгкостью переходить от одной деятельности к другой В условиях оптимальной возбудимости коры нервные процессы характеризуются известной концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и, наконец высокой подвижностью нервных процессов, которые обусловливают протекание каждой организованной целенаправленной деятельности.

Аппаратом, исполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга. Её часто называют лимбико-ретикулярный комплекс или восходящая активирующая система.

К нервным образованиям этого аппарата относятся лимбическая система и неспецифическая система мозга.

С их помощью нижележащие модулирующие аппараты таламического и стволового отделов вовлекаются в реализацию этих процессов, и таким образом обеспечивается достаточный уровень активности для осуществления сложных форм высшей нервной (психической) деятельности.

Стволово-таламо-кортикалъная система
Исследования Д. Моруцци и Г. Мэгуна привели их к открытию в стволе на уровне среднего мозга неспецифической системы, или мезенцефа-лической ретикулярной формации, активирующей кору больших полушарий.

Они установили, что высокочастотная электрическая стимуляция стволовой РФ вызывала увеличение бдительности животного и пробуждение его ото сна; низкочастотная стимуляция оказывала противоположное действие, вызывая состояние покоя, а разрушение неспецифической системы ствола мозга приводило животное в коматозное состояние.

Позже неспецифическая система была найдена в таламусе. Вначале казалось, что эта система распространяет на кору исключительно синхронизирующие ритмические влияния, так как легко воспроизводит ритм низкочастотного электрического раздражения неспецифических ядер таламуса, широко распространяя его на кору. Однако Г.

Джаспер обнаружил, что сенсорное раздражение вызывает локальное и модально-специфическое подавление искусственно вызванных потенциалов «вовлечения».

Он сформулировал свою теорию о диффузно-проекционной таламической системе, согласно которой неспецифические ядра таламуса влияют на кору, вызывая ЭЭТ-десинхронизацию в виде разрушения регулярной медленно волновой активности.

Таламическая неспецифическая система создает локальную активацию коры, проецируясь к ее отдельным зонам, воспринимающим сенсорные сигналы от модально-специфических путей. Это отличает ее от РФ ствола мозга, вызывающей генерализованную активацию, которая захватывает обширные зоны коры.

Последняя более длительна и менее устойчива к угасанию при многократном воспроизведении одним и тем же стимулом по сравнению с реакцией активации таламического происхождения.

Эти различия позволяют связывать функцию стволовой неспецифической системы с поддержанием в мозге определенного уровня фоновой активности, а таламическую неспецифическую систему — с селективным вниманием и локальным ориентировочным рефлексом. Вместе с тем, при выполнении человеком задания, требующего бдительности и внимания, таламическая и стволовая РФ действуют совместно: в обеих структурах наблюдается одновременное увеличение локального мозгового кровотока.

Нейроны коры во время ЭЭТ-десинхронизации обнаруживают признаки активации в виде:1) снижения порога возбудимости нейронов на адекватное раздражение;2) усиления свойства полимодальности — под влиянием неспецифической активации нейрон начинает отвечать на стимулы тех модальностей, которые он игнорировал в отсутствии активации;

3) увеличения лабильности, которое может быть измерено по укорочению циклов восстановления вызванных потенциалов и по изменению частотного состава реакции усвоения ритма сенсорного раздражения биотоками мозга. Все эти эффекты наблюдаются вместе с увеличением негативности постоянного потенциала коры, представляющим механизм медленной модуляции функциональных систем.

Вместе с тем функциональная система нейронов определяется не только сдвигом постоянного потенциала, но и ритмической модуляцией, создаваемой основными ритмами биотоков мозга.

Показано, что максимальная возбудимость сенсорных нейронов и выполнение двигательных реакций синхронизированы с определенной фазой альфаритма у человека и тета-ритма у животных.

Ритмическая активность мозга, синхронизируя во времени возбудимость удаленных нейронов, создает условия для их взаимодействия в процессе реализации той или иной функции, а также при обучении.

Исследование влияний таламуса на кору показало существование в нем нейронных пейсмекеров для низкочастотных ритм'ов. Они были найдены в его специфических ядрах и в неспецифическом таламусе. При спокойном состоянии животного эти нейроны имеют тенденцию разряжаться последовательностью пачек спайков. Пачечные разряды нейронов таламуса имеют фазовую специфичность.

Сенсорные раздражения (звуковые, кожные и др.) вызывают в неспецифическом таламусе реакцию десинхронизации в виде разрушения пачек спайков и замены их одиночными спайками. Нейронная таламическая реакция десинхронизации соответствует появлению в коре ЭЭГ — реакции активации.

Таким образом, таламические структуры мозга работают в двух режимах: в режиме пачечных разрядов, вызывая в ЭЭГ синхронизированные и ритмические колебания, и в режиме десинхронизации пачек спайков.

Последнему режиму соответствует появление ЭЭГ — реакции активации. У человека она обычно выглядит в виде подавления, блокады альфаритма, который замещается иррегулярной активностью низкой амплитуды.

Именно поэтому ее часто рассматривали как выражение десинхронизации регулярной нейронной активности.

Новый взгляд на механизм ритмической активности нейронов связан с открытием разнопороговой кальциевой проводимости. Установлено, что высокопороговые кальциевые каналы в основном представлены на дендритах, тогда как низкопороговые локализованы преимущественно на соли клеток.

Оптимальными условиями для срабатывания низкопороговых кальциевых каналов являются гиперполяризационные изменения мембранного потенциала. Высокопороговые кальциевые каналы реагируют на возбужденный сигнал, если он приходит на фоне деполяризации ее мембранного потенциала.

А то, что разнопороговые кальциевые каналы представлены на одном нейроне, определяет его способность генерировать ритмическую активность в двух частотных диапазонах. Переход от генерации ритма в одном частотном диапазоне к другому диапазону связан со сменой локуса активации кальциевых каналов на нейроне.

Выбор каналов для активации определяется уровнем мембранного потенциала. Два режима генерации ритмической активности в зависимости от уровня мембранного потенциала описаны для нейронов таламуса. Если клетка слегка деполяризована, то она работает на частоте 10 Гц, а если она гиперполя-ризована, то разряжается пачками спайков с частотой 6 Гц. М.

Стериаде подчеркивает особую роль в генезе корковых 40-герцевых ритмов интра-ламинарных ядер таламуса. Выделены нейроны, которые во время бодрствования и быстрого сна разряжаются пачками спайков с необычно высокой частотой потенциалов действия изнутри пачки (800 — 1000 Гц).

Частота следования пачек составляет 20 — 40 Гц, она регулируется величиной сдвига мембранного потенциала в сторону деполяризации. Чем он больше, тем больше частота осцилляций. Генерацию интраламинарными ядрами 40-герцевого ритма связывают с появлением у них резонансного состояния, которое обеспечивает широкое распространение гамма колебаний по коре.

Усиление 40-герцевого ритма в коре имеет холинергическую природу так же, как и реакция ЭЭТ-десинхронизации. Холинергические системы распространяют свою модуляцию во время бодрствования и быстрого сна. Это два состояния, при которых быстрые кортикальные ритмы присутствуют в коре.

Передача информации о сенсорных сигналах осуществляется в результате согласованного взаимодействия специфической и неспецифической систем мозга.

На уровне таламуса специфическая система представлена релейными специфическими и ассоциативными ядрами. Неспецифическую систему образует несколько групп ядер.

Неспецифические нейроны таламуса, так же, как и стволовой РФ, не получают прямого входа от сенсорных органов, а лишь от коллатералей специфических путей.

Активирующие влияния от неспецифической системы сходятся с влияниями специфических систем на клетках коры. Слияние этих двух потоков — необходимое условие для восприятия и осознания действующего стимула.

Исследования показали, что опознание буквы и цифры в трудных условиях наблюдения происходит, если реакция этих нейронов длится не менее 300 мс. При изучении вызванных потенциалов на предъявление осознаваемых и неосознаваемых слов, неосознаваемый стимул вызывает диффузную слабую активацию коры больших полушарий, чем слово, которое осознается.

Утверждение, что ретикулярная формация среднего мозга имеет прямой выход на кору и поэтому прямо влияет на проведение сигнала к коре, получено в поведенческих и физиологических опытах. Высокочастотная электрическая стимуляция (100 — 300 Гц) ретикулярной формации ствола вызывает снижение сенсорных порогов.

Данные об основных медиаторных системах мозга позволяют предположить холинергическую основу реакции активации. В мозге выделено четыре основных медиаторных системы: ДА-ергическая, НА-ергическая, серотонинергическая и холинергическая.

Кора получает широкие проекции от дофаминергических, норадреналинергических и серотонинерги-ческих афферентов. Но эти системы не обнаружили корреляции с ЭЭГ-активацией, вызываемой электрическим раздражением РФ среднего мозга.

Увеличение кортикальной активации связано с увеличением высвобождения ацетилхолина (АХ) в коре. Таким образом, неспецифическая система ствола мозга действует на кору через холинергические афференты.

Конечное звено корковой активации холинергично и представлено мускари-новыми (М)-рецепторами нейронов коры, реагирующими на ацетилхолин.

Это доказывает локальное приложение ацетилхолина к коре, которое оказывает возбуждающее действие примерно на 50% корковых нейронов и которое блокируется атропином, избирательно действующим на М-ре-цеторы.

Установлено, что сенсорное раздражение разной модальности увеличивает количество высвобождающегося ацетилхолина из нейронов коры. Наоборот, с деафферентацией животного уменьшается содержание свободного АХ в коре. Увеличение АХ в жидкости, омывающей поверхность коры, отличается во время ЭЭГ-активации.

Кроме того, активация коры при парадоксальном сне также связана с увеличением содержания АХ в коре.

Базалъная холинергическая система переднего мозга

Недавно было показано, что магноцеллюлярные нейроны, содержащие ацетилхолин и локализованные в базальном переднем мозге, моносинап-тически проецируются на кору. Они участвуют в регуляции сна, бодрствования и причастны к возникновению реакции активации. Холинергическая часть переднего мозга в основном представлена базальным ядром Мейнерта (NB).

Электрическая стимуляция базального ядра (NB) и др. высвобождает в коре АХ у наркотизированной крысы и увеличивает кровоток в коре. Эффект блокируется антагонистами мускариновых рецепторов, т.е. существует холинергическая иннервация сосудов коры, которая обусловливает их расширение.

Активирующая система холинергических нейронов переднего мозга представлена нейронами, связанными с бодрствованием. Уровень их возбуждения меняется параллельно с поведенческой активностью животного. Частота их спайковых разрядов увеличивается во время бодрствования и особенно во время движения, а также в парадоксальном сне. В медленном сне их активность уменьшается.

При этом, как и в таламусе, режим одиночных потенциалов действия сменяется пачечной активностью.

Состояние нейронов, связанных с бодрствованием, находится под контролем неспецифических систем активации среднего мозга и моста через глутаматовые рецепторы, а также со стороны заднего латерального гипоталамуса, который также имеет проекцию на кору и принимает участие в ЭЭГ и поведенческой активации.

Концепция холинергических нейронов БПМ как источника кортикальной активации, поддерживающего бодрствование, должна быть дополнена представлением о существовании специального холинергического механизма.

Этот механизм, обеспечивающий дополнительное высвобождение АХ в локальных участках коры, которые реагируют на стимулы, связанные с подкреплением. Показано, что значительная часть нейронов БПМ реагирует активацией на условные раздражители, связанные с наградой, и не реагирует на условные сигналы наказания.

Это механизм избирательного внимания к значимым стимулам, который обеспечивает их обработку в соответствующих областях коры.

Любому состоянию человека или любому виду деятельности соответствует своя картина распределения активации по участкам неокортекса, которую можно наблюдать на ЭЭГ.

При этом ведущая роль в формировании избирательной активации неокортекса, определяющей избирательность восприятия и действий, принадлежит стриопаллидарной системе, которая сама находится под контролем коры.

Именно она распределяет акгивационные ресурсы мозга, которые не безграничны.

Выходы стриатума участвуют в регуляции мышечного тонуса через нисходящие пути в спинной мозг и в распределении восходящей в кору неспецифической активации.

В результате влияния стриатума на таламус картина распределения активации в нем соответствует мотивационному возбуждению и кортикофугальным сигналам, поступающим в стриатум.

На уровне коры это трансформируется в распределение активаций, которое отвечает требованиям поставленной задачи и реализации целенаправленного поведения.

Источник: https://psyera.ru/moduliruyushchaya-sistema-mozga-1194.htm

§ 2. Модулирующие системы мозга

27. Модулирующая система мозга

Янко Слава (Библиотека Fort/Da) || slavaaa@yandex.ru || http://yanko.lib.ru || Icq# 75088656

обширные подкорковые моторные образования. Раздражение 5-, 7- и 8-го полей премоторной области коры (см. рис.

4) вызывает не соматотопически ограниченные (локальные) вздрагивания отдельных мышц, а целые комплексы движений, имеющих системно организованный характер (баллистические движения глаз в определенную точку пространства, медленные прослеживающие движения глаз, поворот головы, туловища, направленные движения конечностей). Это указывает на то, что «командные» нейроны премоторной коры «организуют» отдельные мышечные сокращения в целостный двигательный акт.

Известно, например, что электрическим раздражением отдельных участков париетальной коры (ассоциативная, теменная область) мозга кошки также можно вызвать быстрые саккады (баллистические движения) и медленные следящие движения глаз.

При поражении этих областей коры собственно движения глаз на зрительные стимулы сохраняются, но запуск произвольных движений (саккад) исчезает. Это говорит о том, что указанная область коры является не обычным моторным центром, а включена в систему запуска, контроля и управления двигательной реакцией.

Так, в париетальной коре (8-е поле) кошки локализованы нейроны, которые возбуждаются только тогда, когда одновременно с появлением стимула к ним поступает возбуждение (модуляция) от системы неспецифической активации мозга, связанное с актами внимания к этому стимулу. Эти нейроны образуют механизм актуализации стимулов, ставших объектом внимания.

Кроме того, в париетальной коре выделены две группы клеток. В одной группе нейронов разряд связан с быстрыми движениями, а во время медленных фаз движений ответ подавляется.

81

Другая группа нейронов разряжается во время медленных следящих движений и фиксации взора. Предполагается, что эти нейроны составляют два канала управления быстрыми и медленными движениями глаз, они могут являться «следящей системой», работающей по механизму внутренней обратной связи, назначение которой связано с коррекцией последовательностей движений.

Премоторные отделы коры представляют мощный аппарат мулътисенсорной конвергенции.

Эти ассоциативные зоны снабжены богатой и разветвленной системой эфферентных путей как к корковым формациям рострального полюса больших полушарий, так и к подкорковым образованиям — специфическим, неспецифическим, ассоциативным ядрам таламуса, гипоталамуса, миндалине, ядрам экстрапирамидной системы, помимо этого они образуют связи со спинным мозгом через пирамидный тракт.

Наиболее важной частью третьего функционального блока мозга являются третичные зоны коры, которые занимают префронтальные или лобные отделы (см. рис. 4). Лобные отделы, по мнению А.Р. Лурии, представляют собой блок программирования намерений, оценки выполненных действий и коррекции допущенных ошибок, т.е. аппарат наиболее сложных форм регуляции целостного поведения.

В филогенезе эти отделы мозга получают мощное развитие лишь на самых поздних этапах эволюции. В.М.

Бехтерев прямо указывал, что в восходящем ряду животных развитие лобных долей идет параллельно развитию интеллектуальных способностей.

Действительно, обнаруживается четкий параллелизм между развитием ассоциативных ядер таламуса и ассоциативными зонами фронтальной и теменной коры, при этом степень развития ассоциативных полей коры

82

млекопитающих является показателем уровня филогенетического статуса вида и уровня его адаптивных возможностей (Байкот, Byлси, Кэмпбел и др.). Можно также отметить, что отношение площади ассоциативных полей к общей поверхности коры существенно возрастает, а площадь проекционных полей соответственно сокращается.

Особенностью префронтальной области (ассоциативных полей) мозга является ее богатейшая система связей как с нижележащими подкорковыми образованиями мозга и соответствующими отделами ретикулярной формации, так и со всеми остальными отделами коры.

Эти связи носят двусторонний, а нередко моносинаптический характер и делают префронтальные отделы коры образованиями, находящимися в самом выгодном положении как для приема и синтеза сложнейшей системы афферентаций, идущих от всех отделов мозга, так и для организации эфферентных импульсов, позволяющих оказывать регулирующие воздействия на все эти структуры. Недавно группа итальянских ученых, исследуя активность нейронов (в нижнем отделе 6-го поля) коры обезьян в свободном поведении, обнаружила (в ростральной части этого отдела) новый класс «командных» нейронов. Эти нейроны разряжались в связи с двигательным актом,

Данилова H.H. = Физиология высшей нервной деятельности — Ростов н/Д: «Феникс», 2005. — 478 с.

Источник: https://studfile.net/preview/2793512/page:7/

Uchebnik-free
Добавить комментарий