22. ВЗАИМОДЕЙСТВИЕ НАУК И ИХ МЕТОДОВ

Взаимодействие наук и их методов

22. ВЗАИМОДЕЙСТВИЕ НАУК И ИХ МЕТОДОВ

Разделение науки на отдельные области было обусловлено различием природы вещей, закономерностей, которым последние подчиняются. Различные науки и научные дисциплины развиваются не независимо, а в связи друг с другом, взаимодействуя по разным направлениям. Одно из них — это использование данной наукой знаний, полученных другими науками.

Один из важных путей взаимодействия наук — это взаимообмен методами и приемами исследования, т. е. применение методов одних наук в других.

Особенно плодотворным оказалось применение методов физики и химии к изучению в биологии живого вещества, сущность и специфика которого одними только этими методами, однако, не была «уловлена».

Для этого нужны были свои собственные — биологические методы и приемы их исследования.

Следует иметь в виду, что взаимодействие наук и их методов затрудняется неравномерностью развития различных научных областей и дисциплин. Методологический плюрализм — характерная особенность современной науки, благодаря которой создаются необходимые условия для более полного и глубокого раскрытия сущности, законов качественно различных явлений реальной действительности.

Наиболее быстрого роста и важных открытий сейчас следует ожидать как раз на участках «стыка», взаимопроникновения наук и взаимного обогащения их методами и приемами исследования. Этот процесс объединения усилий различных наук для решения важных практических задач получает все большее развитие. Это магистральный путь формирования «единой науки будущего».

Теоретизация и диалектизация науки

Наука (особенно современная) развивается по пути синтеза абстрактно-формальной (математизация и компьютеризация) и конкретно-содержательной сторон познания. Вторая из названных сторон выражается, в частности, терминами «теоретизация» и «диалектизация».

Для современной науки характерно нарастание сложности и абстрактности знания, теоретические разделы некоторых научных дисциплин (например, квантовой механики, теоретической физики и др.) достигли такого уровня, когда целый ряд их результатов не может быть представлен наглядно.

Все большее значение приобретают абстрактные, логико-математические и знаковые модели, в которых определенные черты моделируемого объекта выражаются в весьма абстрактных формулах.

Такой процесс происходит во всех науках, и переход на все более высокие уровни абстрагирования усиливается и расширяется.

Диалектизация науки как ее важнейшая закономерность означает все более широкое внедрение во все сферы научного познания идеи развития (а значит, и времени). Причем, именно во все науки, а не только в так называемые «исторические науки» — в геологию, биологию, астрофизику, историю и т. п.

Сегодня многие мыслящие представители частных наук все более четко осознают, что «процесс диалектизации давно прошел» и продолжает расширяться и углубляться — хочется это кому-то или не хочется, нравится кому-то диалектика или нет.

Поэтому необходимо как можно скорее и основательнее «вытравлять» именно извращения диалектики (а не ее саму), дальше творчески развивать диалектический метод, вернуть ту свойственную ему роль, которую он всегда играл в мировой философии, — роль мощного методологического орудия — «стоящего на стороне субъекта средства» (Гегель), с помощью которого он познает и преобразует окружающую действительность, а «заодно» изменяется и сам.

Ускоренное развитие науки

Говоря о важной роли науки в жизни общества, Ф. Энгельс в середине XIX в. обратил внимание на то обстоятельство, что наука движется вперед пропорционально массе знаний, унаследованных ею от предшествующего поколения.

Позднее он же, конкретизируя данное положение, подчеркнул, что со времени своего возникновения (т. е. с XVI—XVII вв.) развитие наук усиливалось пропорционально квадрату расстояния (во времени) от своего исходного пункта.

Констатация экспотенциального закона развития науки (т. е. ускорения его темпов) и есть одна из общих закономерностей ее развития. Данная закономерность проявляется в увеличении общего числа научных работников, научных учреждений и организаций, публикаций, выполняемых научных работ и решаемых проблем, материальных затрат на науки или (и) доходов от нее и т. п.

Ускоренное развитие науки есть следствие ускоренного развития производительных сил общества.

Это привело к непрерывному накоплению знаний, в результате чего их масса, находящаяся в распоряжении ученых последующего поколения, значительно превышает массу знаний предшествующего поколения.

По разным подсчетам (и в зависимости от области науки), сумма научных знаний удваивается в среднем каждые 5—7 лет (а иногда и в меньшие сроки).

Одним из критериев ускорения темпов развития науки является сокращение сроков перехода от одной ступени научного познания к другой, от научного открытия к его практическому применению. Если в прошлом открытие и его применение отделялись десятками и даже сотнями лет, то теперь эти сроки исчисляются несколькими годами и даже месяцами.

Источник: https://cyberpedia.su/4x6040.html

Общие закономерности развития науки

22. ВЗАИМОДЕЙСТВИЕ НАУК И ИХ МЕТОДОВ

Основные понятия: закономерности развития науки, традиция, новация, дифференциация науки, интеграция науки, методологический плюрализм, математизация науки, математическое моделирование, диалектизация науки, критика, догматизм.

Необходимым следствием любой теории развития научного знания, в том числе концепции единства внутринаучных и социокультурных факторов, является требование формулировки общих закономерностей развития научного знания. Под закономерностями развития науки понимаются устойчивые тенденции, проступающие в ее развитии, или существенные связи, прослеживаемые между этапами, стадиями и фазами этого развития.

Закономерности развития науки:

1. Преемственность в развитии научных знаний.

Данная закономерность выражает неразрывность всего познания действительности как внутренне единого процесса смены идей, принципов, теорий, понятий, методов научного исследования.

При этом каждая более высокая ступень в развитии науки возникает на основе предшествующей ступени с удержанием всего ценного, что было накоплено раньше на предшествующих ступенях.

Предполагается, что любая теория должна переходить в предыду­щую, менее общую теорию в тех условиях, в каких эта предыду­щая была установлена (эту мысль подтверждает фраза Ньютона: «Я стоял на плечах гигантов»).

Процесс преемственности в науке (но не только в ней) может быть выражен в терминах «традиция» (старое) и «новация» (но­вое).

Это две противоположные диалектически связанные сторо­ны единого процесса развития науки: новации вырастают из тра­диций, находятся в них в зародыше; все положительное и цен­ное, что было в традициях, в «снятом виде» остается в новациях. Подробнее о традициях и новациях см. Тема 5, §3.

2. Единство количественных и качественных изменений в развитии науки.

Преемственность научного познания не есть однообразный, монотонный процесс, он сменяется то количественными, то качественными изменениями.

Этап количественных изменений науки — это постепенное на­копление новых фактов, наблюдений, экспериментальных дан­ных в рамках существующих научных концепций.

Этап качественных изменений науки — скачок, коренная ломка фундаментальных законов и принципов вследствие того, что они не объясняют новых фактов и новых открытий.

Эти две стороны науки тесно связаны и в ходе ее развития сменяют друг друга как своеобразные этапы данного процесса.

3. Дифференциация и интеграция наук.

Развитие науки характеризуется диалектическим взаимодей­ствием двух противоположных процессов — дифференциацией (выделением новых научных дисциплин) и интеграцией (синте­зом знания, объединением ряда наук — чаще всего в дисципли­ны, находящиеся на их «стыке»).

Дифференциация науки – процесс, связанный с возрастанием числа специальных наук, становлением новых научных дисциплин, формированием новых научных направлений, подходов, концепций, теорий. Дифференциация наук является закономерным следствием бы­строго увеличения и усложнения знаний.

Интеграция науки – процесс, связанный с объединением наук на основе единства различных уровней и фрагментов универсума. Интеграция проявляется как:

· Организация исследований «на стыке» смежных научных дисциплин.

· Разработка «трансдисциплинарных» научных методов, имеющих значение для многих наук (спектральный анализ, компьютерный эксперимент).

· Поиск «объединительных» теорий и принципов (например, теория эволюции).

· Разработка теорий, выполняющих общеметодологические функции в естествознании (кибернетика, синергетика).

· Комплексный характер решения проблем.

Дифференциация и интеграция – две взаимодополняющие тенденции в науке.

4. Взаимодействие наук и их методов.

Один из важных путей взаимодействия наук — это взаимооб­мен методами и приемами исследования, т. е. применение мето­дов одних наук в других.

Например: при­менение методов физики и химии к изучению в биологии живого вещества, сущность и специфика которого одними только этими методами, однако, не была «уловлена».

Методологический плюрализм — характер­ная особенность современной науки, благодаря которой создают­ся необходимые условия для более полного и глубокого раскры­тия сущности, законов качественно различных явлений реальной действительности.

5. Углубление и расширение процессов математизации и компьютеризации.

Развитию знания способствует углубление и расширение процессов математизации и компьютеризации науки как базы новых информационных технологий, обес­печивающих совершенствование форм взаимодействия в научном сообществе.

Сущность процессаматематизациизаключается в применении количественных понятий и формальных методов математики к качественно разнообразному содержанию частных наук.

Одним из основных инструментов математизации научно-технического прогресса становится математическое моделирование — замена исходного объекта соответствующей математической моделью и в дальнейшем — ее изучение (экспериментирование с нею) на ЭВМ с помощью вычислительно-логических алгоритмов.

Например: создание новых «математизированных» разделов теоретической физики, создание специализированного математического аппарата для описания психических явлений и связанного с ними поведения человека (в психологии), создание клиометрии (буквально — измерение истории) – науки, в которой математические методы выступают главным средством изучения истории.

6. Теоретизация и диалектизация науки.

Наука (особенно современная) развивается по пути синтеза абстрактно-формальной (математизация и компьютеризация) и конкретно-содержательной сторон познания. Вторая из названных сторон выражается, в частности, терминами «теоретизация» и «диалектизация«.

По мере развития науки роль ее теоретической компоненты возрастает, что не дает основания для умаления роли эмпирии, опыта.

Процесс углубления теоретизации «выглядит» всегда специфически на каждом качественно-своеобразном этапе развития науки.

Кроме того, этот процесс определяется предметом данной науки и особенно сильно выражен в математике, физике, химии и других естественных науках и дисциплинах, хотя все более характерным становится в социально-гуманитарном познании.

Диалектизация науки как ее важнейшая закономерность означает все более широкое внедрение во все сферы научного познания идеи развития (а значит, и времени). Причем именно во все науки, а не только в так называемые «исторические науки» — в геологию, биологию, астрофизику, историю и т.п.

7. Ускоренное развитие науки.

Данная закономерность проявляется в увеличении общего числа научных работников, научных учреждений и органи­заций, публикаций, выполняемых научных работ и решаемых про­блем, материальных затрат на науки или (и) доходов от нее и т. п.

Причина ускорения развития науки:

Ø ускорение раз­вития производительных сил общества;

Ø сокращение сроков перехода от одной ступени научного по­знания к другой, от научного открытия к его практическому при­менению;

Ø разви­тие средств сообщения, облегчившее обмен идеями.

8. Свобода критики, недопустимость монополизма и догматизма.

Закономерностью развития науки является и возрастание критичности в научной среде, открытость, антидогматический характер проведения научных исследований.

Критика— способ духовной деятельности, основная задача которого — целостная оценка явления с выявлением его противо­речий, сильных и слабых сторон и т. д.

Формы критики:

а) негативная, разрушительная — беспощад­ное и полное («голое») отрицание всего и вся;

б) конструктивная, созидательная, предлагающая конкретные пути решения проблем, реальные методы разрешения противоречий, эффективные способы преодоления заблуждений. Это важнейшее условие для реализации принципа объективности научного познания.

Для науки должен быть характерен конструктивно-критический подход, который исходит не из той реальности, которую желательно видеть, а из той, которая есть со всеми ее плюсами и минусами, достоинствами и недостатками. Наука должна избегать догматизма, закрытости от критики.

Догматизм— форма метафизического мышления, характе­ризующаяся застылостью, косностью, окостенелостью, «мертвостью» и неподвижностью, стремлением к авторитарности.

Догматизм представляет собой специфическое отношение субъекта к некоторому содержанию познания, в котором данное содержание конституируется в качестве абсолютно абсолютного.

Фактическое «замещение» действительности абсолютным конструктом неизбежно приводит к заблуждениям в познании.

Резюме: наука – это живая, открытая изменениям система знаний, которая постоянно подвергается достройке, перестройке, она постоянно усложняется, становится более теоретичной, математизируется, но в то же время она стремится видеть мир целостно, диалектично.

Она дорожит накопленным багажом знаний, но в то же время она не боится к качественным изменениям, прыжкам в новое видение мира и миров (к новым онтологиям). Все это позволяет ей активно развиваться, преодолевать проблемы, с которыми сталкивается человечество (природные и рукотворные, техногенные катастрофы).

Закономерностями ее развития являются дифференциация и интеграция, математизация, диалектизация, стремление к междисциплинарности методов, свободе критике и недопустимости догматизма.

Вопросы для самопроверки и обсуждения.

1. Какое место занимает проблема роста научного знания в философии науки?

2. Какие существуют позиции в отношении вопроса о динамике научного знания?

3. Что общего у эволюционной эпистемологии и постпозитивизма в вопросе о росте научного знания?

4. В чем сильные и слабые стороны модели роста научного знания экстерналистов?

5. В чем сильные и слабые стороны модели роста научного знания интерналистов?

6. В чем сильные и слабые стороны модели роста научного знания К. Поппера?

7. Приведите пример из истории науки, который свидетельствует об антикумулитявистской направленности науки.

8. Какую роль играют проблемы и проблемные ситуации в развитии науки?

9. Почему постановка проблемы в диссертационном исследовании является обязательным условием?

10. Существует ли противоречие между такими процессами развития науки, как дифференциация и интеграция?

11. Почему современная наука должна непременно стремиться к антидогматизму и свободе критики?

12. Почему современная наука стремится к своей максимальной математизации? С чем это связано?

13.Почему постнеклассическая наука стремится к своей междисциплинарности и использует междисциплинарные методы познания?

Дата добавления: 2018-04-04; просмотров: 1312;

Источник: https://studopedia.net/3_37042_obshchie-zakonomernosti-razvitiya-nauki.html

Взаимодействие наук и их методов в развитии биомедицинского будущего россии — успехи современного естествознания (научный журнал)

22. ВЗАИМОДЕЙСТВИЕ НАУК И ИХ МЕТОДОВ
1 В процессе развития общества происходит всё более тесное взаимодействие естественных, социальных и технических наук, возрастание активной роли науки во всех сферах жизнедеятельности людей, повышение её социального значения, сближение различных форм знания, упрочение аксиологической (ценностной) суверенности науки.

С давних пор механика была тесно связана с математикой, которая впоследствии стала активно вторгаться и в другие — в том числе и гуманитарные — науки. Успешное развитие биологии и медицины невозможно без опоры на знания, полученные в физике, химии и т.п.

Однако закономерности, свойственные высшим формам движения материи, не могут быть полностью сведены к низшим. Рост науки не имеет ничего общего с равномерным развёртыванием научных дисциплин, каждая из которых в свою очередь подразделяется на всё большее число водонепроницаемых отсеков.

Конвергенция различных проблем и точек зрения способствует разгерметизации образовавшихся отсеков и закутков и эффективному перемешиванию научной культуры.

Один из важных путей взаимодействия наук — взаимообмен методами и приёмами исследования, т.е. применение методов одних наук в других.

Особенно плодотворным оказалось применение методов физики и химии к изучению биологии живого вещества, сущность и специфика которого одними только этими методами, однако, не была достаточно познана. Для этого необходимы свои собственные — биологические методы и приёмы исследования.

Взаимодействие наук и их методов затрудняется неравномерностью развития различных научных областей и дисциплин. Методологический плюрализм — характерная особенность современной науки, благодаря которой создаются необходимые условия для более полного и глубокого раскрытия сущности, законов качественно различных явлений реальной действительности.

В самом широком плане взаимодействие наук происходит посредством изучения общих свойств различных видов и форм движения материи. Оно имеет важное значение для производства, техники и технологии, которые сегодня всё чаще становятся объектами применения комплекса многих (а не отдельных) наук.

Наиболее быстрого роста и важных открытий сейчас следует ожидать как раз на участках стыка, взаимопроникновения наук и взаимного обогащения их методами и приёмами исследования.

Этот процесс объединения усилий различных наук для решения важных практических задач получает всё большее развитие как магистральный путь формирования единой науки будущего.

Информационно-коммуникационные технологии (ИКТ) в последние десятилетия служат одним из основных катализаторов экономического и социального развития.

Проникновение ИКТ во все сферы человеческой деятельности носит беспрецедентный характер.

Управление производством, транспорт и глобальные коммуникации, финансы, медицина, образование и наука — прогресс в этих и многих других областях в значительной степени основан на применении информационных технологий.

В биоинформационных технологиях наиболее актуальными будут являться разработки на стыке микро-, нано- и биотехнологий. В их числе выявление базовых механизмов работы головного мозга и памяти, интегрированные системы предупреждения рисков для здоровья, а также системы непрерывного мониторинга важнейших физиологических параметров организма.

Другое важное направление связано с исследованием механизма усвоения знаний, в том числе при использовании образовательных информационных систем и с построением на этой основе моделей непрерывного профессионального образования. ИКТ отличаются наиболее быстрыми темпами внедрения научных результатов в производство.

В ближайшее десятилетие ожидается появление большого числа научных достижений, открывающих дорогу новым, более эффективным приложениям.

Технологии живых систем призваны формировать основу для решения острейших социальных проблем, касающихся каждого человека, — профилактики и лечения наиболее распространённых и опасных заболеваний, а также обеспечения радикального повышения эффективности сельскохозяйственного производства.

Наиболее перспективные направления использования технологий живых систем связаны с интеграцией био-, нано- и информационных технологий.

При этом согласно экспертным оценкам, наиболее важными для будущего России являются разработки в сфере биосенсоров, биомедицины, клеточных, биокаталитических и биосинтетических технологий.

Основное практическое применение технологий живых систем ожидается в сфере медицины, включая методы диагностики, профилактики и лечения заболеваний. Актуальные для России темы охватывают профилактику социально значимых заболеваний (атеросклероза, ишемической болезни сердца, инфаркта миокарда и др.

); выявление роли генетических факторов в патогенезе социально значимых мультифакторных заболеваний; комплексная ДНК-диагностика наследственных заболеваний; индивидуальное генетическое тестирование, а также прогнозирование риска развития, степени тяжести течения и оценки эффективности терапии сердечно-сосудистых заболеваний.

В области клеточных технологий большое значение придаётся проведению фундаментальных исследований, направленных на выяснение молекулярных и клеточных механизмов трансформации нормальных клеток в раковые; выявление связей между популяциями нормальных, стволовых и раковых клеток, составляющих опухолевые узлы, и ключевых биомолекул при злокачественной трансформации клеток; а также раскрытие молекулярных механизмов регенерации тканей. Практическое применение этих технологий ожидается в области регенерации тканей и органов на основе стволовых клеток, получения иммунокомпетентных клеток, систем экспресс-диагностики инсульта мозга.

Биосенсорные технологии являются междисциплинарным направлением и охватывают молекулярную химию, генетику и физику. Они имеют огромное влияние на повышение качества жизни человека, предлагая раннюю диагностику заболеваний, выявление вредных веществ в пище и окружающей среде.

В качестве наиболее важной тематики в данной области: тест-системы для диагностики рака; системных, инфекционных и наследственных заболеваний (в т.ч.

лекарственно-устойчивых); биосенсоры и биочипы для клинической диагностики с использованием новых типов биологических устройств; биочипы для полуавтоматической регистрации генных маркеров наиболее значимых патологий; технологии быстрой идентификации токсических веществ и патогенов.

Прогресс геномных и постгеномных технологий создания лекарственных средств будет определяться решением таких исследовательских задач, как: установление взаимосвязи между мутациями в геноме и профилем лекарственной устойчивости патогенных микроорганизмов — микобактерий туберкулеза, стрептококков, гонококков и др.

; раскрытие причин многофакторных генетических заболеваний и предрасположенностей к ним, в частности, связанных с неправильной экспрессией генов; установление корреляций между генетическими полиморфизмами и вариантами функционирования различных систем организма.

В практическом плане наиболее перспективны поиск новых молекулярных мишеней для создания новых лекарственных средств и ранних маркеров заболеваний, создание вакцин против широкого круга заболеваний (малярии, рака шейки матки, гепатитов А и С и др.

); системы доставки биологически активных соединений к органам-мишеням, в том числе с использованием наночастиц (аэрозоли, липосомы, фагосомы).

Биокаталические и биосинтетические технологии будут играть решающую роль для систем защиты окружающей среды и очистки сточных вод; комплексной переработки возобновляемых ресурсов животного и растительного происхождения; создания биодеградируемых пластиков (полилактат, полигидроксибутират), органических химикатов на основе биоконверсии лигноцеллюлозы; биосовместимых биополимерных материалов, самостерилизующихся поверхностей для медицины и др. Биоинформационные технологии будут использоваться для решения таких актуальных научных задач, как выяснение молекулярных механизмов взаимодействия клеточных и вирусных геномов; выяснение структуры бактериальных сообществ и механизмов взаимодействия между членами таких сообществ, в том числе, путём переноса генетической информации; выявление механизмов эпигенетического наследования; анализ вариабельных участков генома человека.

К числу перспективных направлений практического использования относятся определение физиологических свойств организма по геному (в том числе для микроорганизмов); моделирование метаболических и сигнальных путей в клетке; молекулярный дизайн био- и наноструктур (лекарственных препаратов, функциональных наноустройств с использованием биополимеров и др.).

В области биоинженерии перспективными направлениями исследований являются создание методов ранней и дифференциальной диагностики рака с использованием геномных и постгеномных (транскриптомика) данных; выяснение молекулярных и клеточных механизмов иммунного ответа, в т.ч. врождённого иммунитета.

В качестве наиболее актуальных сфер практического приложения указаны доставка генетического материала в органы и ткани, быстрый и дешёвый сиквенс ДНК; создание трансгенных сельскохозяйственных растений с улучшенными свойствами.

Следует отметить, что практическая значимость биоинженерии существенно снижается проблемами, связанными с острыми дискуссиями по поводу практики использования генетически модифицированных продуктов.

Уровень российских разработок в области живых систем в целом значительно уступает мировому. Несколько выше среднего уровень исследований и разработок в сфере биоинформационных, клеточных и биосенсорных технологий.

Но даже и для этих областей лишь в отдельных направлениях исследований Россия конкурентоспособна на мировом уровне. Среди них — исследования структуры бактериальных сообществ и обмена между их членами генетической информацией.

Данная тема представляет собой удачный современный пример синергизма между биологическим знанием и применением информационных технологий.

Другая успешная область — иммунизация против латентных инфекций — отражает успехи советской и российской науки в области создания отечественных вакцин. Технологии на основе биологических микрочипов (ДНК-чипы) давно и успешно развиваются в России.

Итак, в перспективе высоко оценивается моделирование физиологических свойств микроорганизмов, что открывает возможности создания новых лекарств, а особенно это важно при появлении высокой резистентности патогенов к уже существующим препаратам.

Неплохие позиции российские учёные сохраняют в области биочипов для обнаружения патогенных бактерий и вирусов и определения их лекарственной чувствительности, а также в разработке технологий быстрой идентификации токсических веществ и патогенов.

Ожидается выявление фундаментальных механизмов образования злокачественных опухолей, внедрение в лечебную практику методов ранней и дифференциальной диагностики рака; биотехнологий, автоматизирующих процесс индивидуального генетического тестирования; технологий иммуномодуляционной терапии лейкозов, лимфом, отдельных видов рака.

Библиографическая ссылка

Парахонский А.П. ВЗАИМОДЕЙСТВИЕ НАУК И ИХ МЕТОДОВ В РАЗВИТИИ БИОМЕДИЦИНСКОГО БУДУЩЕГО РОССИИ // Успехи современного естествознания. – 2009. – № 10. – С. 72-74;
URL: http://natural-sciences.ru/ru/article/view?id=13109 (дата обращения: 06.03.2020).

Источник: https://natural-sciences.ru/ru/article/view?id=13109

Современные проблемы взаимодействия фундаментального, прикладного и технического знания

22. ВЗАИМОДЕЙСТВИЕ НАУК И ИХ МЕТОДОВ

Министерство образования и науки Российской Федерации

Саратовский государственный технический университет

Кафедра «»

Контрольная работа

по дисциплине «Философия науки и техники»

на тему «Современные проблемы взаимодействия фундаментального, прикладного и технического знания»

Выполнил:

Курс 3

Специальность

шифр_______________________

Ф.И.О. Иванов Иван Иванович

Проверил:___________________

Саратов – 2014

Современные проблемы взаимодействия фундаментального, прикладного и технического знания

Оглавление

Введение……………………………………………………………………………2

1.  Проблема соотношения естественных и технических наук…………………2

2. Технические науки и их специфика. Фундаментальные и прикладные исследования в технических науках……………………………………………..3

3. Структура технической теории и специфика технического знания…………7

Заключение……………………………………………………………………….12

Литература……………………………………………………………………….12

Введение

 В настоящее время взаимосвязь фундаментальной и прикладной науки остается актуальной проблемой в истории и методологии научного познания.

Философия науки уделяет много внимания современным проблемам взаимодействия фундаментального, прикладного и технического знания, проблемам этики науки, но недостаточно занимается возникающими при взаимодействии фундаментальной науки, технологии, техники эпистемологическими проблемами. Одна из задач философии науки – показать механизмы их взаимодействия.

Традиционно считалось, что фундаментальные и прикладные науки представляют собой разные типы исследовательской деятельности, которые преследуют каждый свои цели и следуют своим ценностям.

Получение истинного знания, независимого от целей и ценностей человека  – задача фундаментальной науки, использование этих знаний, применение их на практике для преобразования действительности в нужном для человека направлении – задача науки прикладной.

1. Проблема соотношения естественных и технических наук

В современной литературе по философии техники можно выделить следующие основные подходы к решению проблемы изменения соотношения науки и техники:

1) техника рассматривается как прикладная наука;

2) процессы развития науки и техники рассматриваются как автономные, но скоординированные процессы;

3) современная наука рассматривается в ее ориентации на развитие техники.

Первоначально, с момента возникновения техники, в узком значении этого термина, — техника действительно во многом действительно выполняла функцию применения знаний, открытых в науке. Однако, со временем, по мере накопления собственно технических знаний, техника и технические науки образовали собственную сферу, отличающуюся от научной.

Эта сфера получила такое быстрое развитие, что иногда действительно создается впечатление, что современная наука – служит технике. Однако наиболее взвешенный подход состоит в выделении обеих областей деятельности – научной и технической – и в исследовании их взаимовлияний.

Иногда считают, что главное различие между наукой и техникой — лишь в широте кругозора и в степени общности проблем: технические проблемы более узки и более специфичны. Однако в действительности наука и техника составляют различные сообщества, каждое из которых различно осознает свои цели и систему ценностей.

Современная техника немыслима без глубоких теоретических исследований, которые проводятся сегодня не только в естественных, но и в особых — технических — науках.

Если вплоть до конца XIX века регулярного применения научных знаний в технической практике не было, то это характерно для технических наук сегодня. Начиная с  XIX века наблюдается «сциентизация техники» сопровождающаяся «технизацией науки». В целом выделяют следующие этапы взаимодействия науки и техники, приведшие к развитию технических наук:

— В первый период (донаучный) последовательно формируются три типа технических знаний: практико-методические, технологические и конструктивно-технические;

— Во втором периоде происходит зарождение технических наук (со второй половины XVIII в. до 70-х гг. XIX в.) происходит, во-первых, формирование научно-технических знаний на основе использования в инженерной практике знаний естественных наук и, во-вторых, появление первых технических наук;

— Третий период — классический (до середины XIX века) характеризуется построением ряда фундаментальных технических теорий;

— Для четвертого этапа (настоящее время) характерно осуществление комплексных исследований, интеграция технических наук не только с естественными, но и с общественными науками.

  1. Технические науки и их специфика. Фундаментальные и прикладные исследования в технических науках

Выявление специфики технических наук обычно осуществляется на основе их сопоставления с другими науками. К настоящему времени чаще всего выделяются естественные, гуманитарные, математические и технические науки, рассматриваемые как равноправные партнеры. Наиболее тесная связь наблюдается между техническими и естественными науками.

Каждая техническая наука — это отдельная и относительно автономная дисциплина, обладающая рядом особенностей. Технические науки — часть науки и, хотя они не должны далеко отрываться от технической практики, не совпадают с ней. Техническая наука обслуживает технику, но является прежде всего наукой, т.е.

направлена на получение объективного, поддающегося социальной трансляции знания.

Действительно, сегодня никого не удивит тот факт, что «целевые исследования, которые проводятся в промышленных лабораториях исследователями, получившими инженерное образование, приводят к важным научным прорывам или что ученые, работающие в университетах или академических центрах, приходят к важным технологическим открытиям». Поэтому технические науки должны в полной мере рассматриваться как самостоятельные научные дисциплины, наряду с общественными, естественными и математическими науками. Вместе с тем они существенно отличаются от последних по специфике своей связи с техникой.

Технические и естественные науки имеют одну и ту же предметную область инструментально измеримых явлений. Хотя они могут исследовать одни и те же объекты, но проводят исследование этих объектов различным образом.

Технические явления в экспериментальном оборудовании естественных наук играют решающую роль, а большинство физических экспериментов является искусственно созданными ситуациями. Объекты технических наук также представляют собой своеобразный синтез «естественного» и «искусственного».

Искусственность объектов технических наук заключается в том, что они являются продуктами сознательной целенаправленной человеческой деятельности. Их естественность обнаруживается прежде всего в том, что все искусственные объекты в конечном итоге создаются из естественного (природного) материала.

Естественнонаучные эксперименты являются артефактами, а технические процессы — фактически видоизмененными природными процессами. Осуществление эксперимента — это деятельность по производству технических эффектов и может быть отчасти квалифицирована как инженерная, т.е.

как конструирование машин, как попытка создать искусственные процессы и состояния, однако с целью получения новых научных знаний о природе или подтверждения научных законов, а не исследования закономерностей функционирования и создания самих технических устройств.

Технические науки к началу ХХ столетия составили сложную иерархическую систему знаний — от весьма систематических наук до собрания правил в инженерных руководствах.

К началу ХХ столетия технические науки, выросшие из практики, приняли качество подлинной науки, признаками которой являются систематическая организация знаний, опора на эксперимент и построение математизированных теорий.

В технических науках появились также особые фундаментальные исследования.

Таким образом, естественные и технические науки — равноправные партнеры. Они тесно связаны как в генетическом аспекте, так и в процессах своего функционирования.

Именно из естественных наук в технические были транслированы первые исходные теоретические положения, способы представления объектов исследования и проектирования, основные понятия, а также был заимствован самый идеал научности, установка на теоретическую организацию научно-технических знаний, на построение идеальных моделей, математизацию. В то же время нельзя не видеть, что в технических науках все заимствованные из естествознания элементы претерпели существенную трансформацию, в результате чего и возник новый тип организации теоретического знания. Кроме того, технические науки со своей стороны в значительной степени стимулируют развитие естественных наук, оказывая на них обратное воздействие.

Однако сегодня такой констатации уже недостаточно. Для определения специфики технического знания и технических наук необходимо анализировать их строение.

В настоящее время научно-технические дисциплины представляют собой широкий спектр различных дисциплин — от самых абстрактных до весьма специализированных, которые ориентируются на использование знаний не только естественных наук (физики, химии, биологии и т.д.

), но и общественных (например, экономики, социологии, психологии и т.п.). Относительно некоторых научно-технических дисциплин вообще трудно сказать, принадлежат ли они к чисто техническим наукам или представляют какое-то новое, более сложное единство науки и техники.

Кроме того, некоторые части технических наук могут иметь характер фундаментального, а другие — прикладного исследования.

Прикладное исследование — это такое исследование, результаты которого адресованы производителям и заказчикам и которое направляется нуждами или желаниями этих клиентов, фундаментальное — адресовано другим членам научного сообщества.

Современная техника является не только применением существующего научного знания, но имеет творческую компоненту. Поэтому в методологическом плане исследование в технической науке не очень сильно отличается от общенаучного.

Для современной инженерной деятельности требуются не только краткосрочные исследования, направленные на решение специальных задач, но и широкая долговременная программа фундаментальных исследований в лабораториях и институтах, специально предназначенных для развития технических наук.

В то же время современные фундаментальные исследования в технических науках более тесно связаны с приложениями.

Для современного этапа развития науки и техники характерно использование методов фундаментальных исследований для решения прикладных проблем. Тот факт, что исследование является фундаментальным, еще не означает, что его результаты неутилитарны.

Работа же, направленная на прикладные цели, может быть весьма фундаментальной. Критериями их разделения являются в основном временной фактор и степень общности. Вполне правомерно сегодня говорить и о фундаментальном промышленном исследовании.

В научно-технических дисциплинах необходимо четко различать исследования, включенные в непосредственную инженерную деятельность и теоретические исследования, которые мы будем далее называть технической теорией.

Наибольшее различие между физической и технической теориями заключается в характере идеализации: физик может сконцентрировать свое внимание на наиболее простых случаях (например, исключить трение, сопротивление жидкости и т.д.

), но все это для технической теории должно приниматься ею во внимание. Таким образом, техническая теория имеет дело с более сложной реальностью, поскольку не может исключить сложное взаимодействие физических факторов, имеющих место в машине.

Техническая теория является менее абстрактной и идеализированной, она более тесно связана с реальным миром инженерии.

Техническую теорию создает особый слой посредников — «ученые-инженеры» или «инженеры-ученые». Ибо для того, чтобы информация перешла от одного сообщества (ученых) к другому (инженеров), необходима ее серьезная переформулировка и развитие.

Так, Максвелл был одним из тех ученых, которые сознательно пытались сделать вклад в технику (и он действительно оказал на нее большое влияние). Но потребовались почти столь же мощные творческие усилия британского инженера Хэвисайда, чтобы преобразовать электромагнитные уравнения Максвелла в такую форму, которая могла быть использована инженерами.

Таким посредником был, например, шотландский ученый-инженер Рэнкин — ведущая фигура в создании термодинамики и прикладной механики, которому удалось связать практику построения паровых двигателей высокого давления с научными законами. Для такого рода двигателей закон Бойля-Мариотта в чистом виде не применим.

Рэнкин доказал необходимость развития промежуточной формы знания — между физикой и техникой. Действия машины должны основываться на теоретических понятиях, а свойства материалов выбираться на основе твердо установленных экспериментальных данных.

Технические теории в свою очередь оказывают большое обратное влияние на физическую науку и даже в определенном смысле на всю физическую картину мира.

Например, (по сути, — техническая) теория упругости была генетической основой модели эфира, а гидродинамика — вихревых теорий материи.

Разделение исследований в технических науках на фундаментальные и прикладные позволяет выделить и рассматривать техническую теорию в качестве предмета особого философско-методологического анализа и перейти к изучению ее внутренней структуры.

За последние десятилетия возникло множество технических теорий, которые основываются не только на физике и могут быть названы абстрактными техническими теориями (например, системотехника, информатика или теория проектирования), для которых характерно включение в фундаментальные инженерные исследования общей методологии. Для трактовки отдельных сложных явлений в технических разработках могут быть привлечены часто совершенно различные, логически не связанные теории. Такие теоретические исследования становятся по самой своей сути комплексными и непосредственно выходят не только в сферу «природы», но и в сферу «культуры». «Необходимо брать в расчет не только взаимодействие технических разработок с экономическими факторами, но также связь техники с культурными традициями, а также психологическими, историческими и политическими факторами». Таким образом, мы попадаем в сферу анализа социального контекста научно-технических знаний.

Источник: https://www.yaneuch.ru/cat_10/sovremennye-problemy-vzaimodejstviya-fundamentalnogo-prikladnogo/546586.3418323.page1.html

Uchebnik-free
Добавить комментарий